Desalinating Ocean Water for Emergency Relief with a Wave-Powered Reverse Osmosis System

Team: Rita Chen (ME), Michael Kotur (ME), Danny Ma (ME), Ian Miller (ME)

Advisors: Dr. Reza Alam (ME), Michael Kelly (ME)

Objective:
- Alleviate water insecurity in remote coastal communities
- Utilize CAD, FEA, test-stand prototyping
- Build a theoretical model to maximize efficiency and convenience of a wave-powered desalination system

Relevance:
- 70% of Earth is covered by undrinkable water
- Easy access to seawater on coastlines

Rotary Pump:
A four cylinder pump loaded by a mooring drum drawing power from wave energy. The pumps are pressurized to 800 psi for successful reverse osmosis. A static analysis was performed in ANSYS to ensure the components do not fail.

Hydraulic Circuit:
Compact piping system to house reverse osmosis filter, pressure relief valves, and accumulator. A complete CAD model to demonstrate concept and size.

Absorber:
Inflatable design allows for compact shipping and quick deployment. Custom shape provides rigid connection to pump housing and captures wave energy. Manufacturability and cost estimates confirmed by supplier source.

Impact:
- Can meet demand for 40 people by desalinating ~590 liters of seawater daily
- System powered through renewable energy (solar and wave energy)
- Easily transported and deployed in areas without heavy machinery
- Freshwater production volume matches the system volume (900L) every 1.5 days