Radioactive Material Handling Mechanism

Jay Lin1, Peter Hosemann1, Sven Vogel2, Joe Otoole2, Jason Harper3

Creating a safer laboratory environment for radiological workers by designing safer Radioactive Material Handling Mechanism (RaMHaM) containers used in non-destructive neutron beamline tomographic imaging research.

- **Functionality:**
 - Non-destructive neutron beamline tomographic imaging
 - Spent fuel rodlet transportation between national labs
 - Use as payload in Type-B container

- **Safety constraints:**
 - Low attenuation on the exterior.
 - Fail safety mechanism
 - Regulated by Nuclear Regulatory Commission

Container Design

- Modular Motor
- Plug Securing Plate
- Center Shaft
- Beam Port Shutter
- Neutron Beamline Source
- 304 Stainless Steel Inner Shield
- Cast Lead Fill-in

- Pneumatic Airlift
- Top Plug
- Side Port Shutter
- Neutron Beamline Source
- Nuclear Spent Fuel Rodlet
- 304 Stainless Steel Outer Shield Frame

Type B Transportation Cask

Laboratory Space
Radioactive Material Handling Mechanism

Jay Lin¹, Peter Hosemann¹, Sven Vogel², Joe Otoole², Jason Harper³

¹ University of California, Berkeley ² Los Alamos National Lab ³ Idaho National Lab

Creating a safer laboratory environment for radiological workers by designing safer Radioactive Material Handling Mechanism (RaMHaM) containers used in non-destructive neutron beamline tomographic imaging research.

- **Functionality:**
 - Non-destructive neutron beamline tomographic imaging
 - Spent fuel rodlet transportation between national labs
 - Use as payload in Type-B container

- **Safety constraints:**
 - Low attenuation on the exterior.
 - Fail safety mechanism
 - Regulated by Nuclear Regulatory Commission