Program Orientation
Tuesday, August 7, 2018 (attendance required)

ENG 270 Series Pre-Semester Leadership Intensives
August 8-17, 2018 (attendance required; 2 of 3 units of E 270 series)
January 7-18, 2019 (attendance required; 2 of 3 units of E 270 series)

Full-Time Program Length
9 months (2 consecutive semesters)

Minimum Number of Units to Complete Degree
25 semester units (must be in 200 series)

Technical Electives in Area of Concentration
A minimum of 12 semester units (must be in 200 series and letter-graded) are required.

Please see the following pages for specific course requirements for each technical concentration.

Core Leadership Curriculum
8 semester units

Please see following page for details.

Comprehensive Final Examination
The Comprehensive Exam will be divided into two components, one devoted to leadership topics (to be administered by the Fung Institute) and the other to technical topics (to be administered by individual departments within COE). The exam may be written, oral, or a combination of the two.

Capstone Projects
5 semester units of ENGIN 296MA-B (letter grade at end of Spring semester) Students are required to complete a capstone project.

2 semester units ENGIN 296MA – Fall
3 semester units ENGIN 296MB – Spring

Grade Point Averages (GPAs)
All students are required to have a minimum overall GPA of 3.0.

Minimum Units per Semester
Full-time graduate students must enroll in 12 semester units each semester.

Continued on page 2
Fall Engineering Leadership Topics (3 units):

- ENGIN 270A, Organizational Behavior for Engineers
- ENGIN 270B, R&D Tech Management & Ethics
- ENGIN 270C, Project Management and Teaming

Designed for Master of Engineering students, these courses explores key management and leadership concepts at the executive level that are relevant to technology-dependent enterprises. During the courses, students undertake rigorous case study analysis of actual business situations.

Spring Engineering Leadership Topics (3 units):

Students choose 2 of 4 to meet core requirement:

- ENGIN 270D, Entrepreneurship for Engineers
- ENGIN 270E, Technology Strategy
- ENGIN 270I, Industry Analysis
- ENGIN 270G, Marketing & Product Management
- ENGIN 270H, Accounting and Finance

Required: ENGIN 270C, Project Management and Teaming

Communications for Engineering Leadership (ENGIN 295, letter graded)

1 unit Fall, 1 unit Spring.

Communications for Engineering Leaders is a year-long course which supports your efforts to generate clear, engaging, and memorable content for your project’s reporting deliverables.

Reporting deliverables include: presentations, pitches, press releases, promotional materials, project proposals, and research papers.

Engineering Leadership topics listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
Master of Engineering Program Office

The Coleman Fung Institute for Engineering Leadership
Shires Hall
2451 Ridge Road
Berkeley, CA 94709
(510) 642-0633
Open during regular business hours, Mon-Fri from 9am to 5pm

Fung Institute Staff

Lee Fleming
Faculty Director
lfleming@ieor.berkeley.edu
230B Blum Hall

Hazel Palaski
Director of Operations
hpalaski@berkeley.edu

Beth Leven
Director, Academic Affairs
(510) 642-7545
leven@berkeley.edu
331 Shires Hall

Julie McShane
Associate Director, Career Services
(510) 642-6402
jmcschane@berkeley.edu
222 Shires Hall

Wayne Delker
Director, Corporate Capstone Experience
(510) 642-4374
wdelker@berkeley.edu
331 Shires Hall

Alex Beliaev
Director, Academic Capstone Experience
alexbl@berkeley.edu
330 Shires Hall

Jill Huynh
Career Services Specialist
(510) 642-0721
221 Shires Hall

Joy Ahn
Senior Student Services and Capstone Advisor
(510) 642-6479
joyahn@berkeley.edu
214 Shires Hall

Megan Braverman
Student Services and Admissions Advisor
(510) 642-1750
mbraverman@berkeley.edu

Ashley Villanueva
Marketing Specialist
ashvillanueva@berkeley.edu

Jené Madison
Events Specialist
jmadison@berkeley.edu
Fall 2018
BIOE C208 Biological Performance of Materials
BIOE C209 Advanced Orthopedic Biomechanics
BIOE 211 Cell and Tissue Mechano-transduction
BIOE C217 Biomimetic Engineering — Eng. from Biology
BIOE 221 Advanced BioMEMS and Bionanotechnology
BIOE C223 Polymer Engineering
BIOE 224 Basic Principles of Drug Delivery
BIOE 231 Intro to Computational Biology
BIOE C237 Adv. Designing for the Human Body
BIOE 247 Principles of Synthetic Biology
BIOE 248 Bioenergy and Sustainable Chemical Synthesis: Metabolic Engineering and Synthetic Biology
BIOE C250 Nanomaterials in Medicine
BIOE 252 Clinical Need-Based Therapy Solutions
BIOE C261 Medical Imaging Signals and Systems
BIOE 263 Principles of Molecular & Cellular Biophotonics

Spring 2019
BIOE C214 Advanced Tissue Mechanics
BIOE C215 Molecular Biomechanics & Mechanobiology of the Cell
BIOE C216 Macromolecular Science in Biotechnology and Medicine
BIOE C222 Adv. Structural Aspects of Biomaterials
BIOE 225 Biomolecular Structure Determination
BIOE 232 Genetic Devices
BIOE 235 Frontiers in Microbial Systems Biology
BIOE 241 Probabilistic Modeling in Computational Biology
BIOE 269L Molecular & Cellular Biophotonics Lab
BIOE 282 Model-Based Design of Clinical Therapies
BIOE 290 Biotechnology Entrepreneurship, Innovation, and Product Development

Student Affairs Officer:
Kristin Olson
(510) 642-9931
kaolson@berkeley.edu
306 Stanley Hall, #1762

MEng Courses
Bioengineering MEng students will have the opportunity to choose 200-level bioengineering electives that best suit their professional goals and Capstone project; other courses can be taken with the approval of your academic advisor. Please note that not all 200-level courses are taught every year.

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
Transportation Engineering - Intelligent Transportation Systems Track

2 required technical electives:
- CE 251 Operation of Transportation Facilities
- CE 252 Systems Analysis in Transportation

2 courses chosen from:
- CE 253 Intelligent Transportation Systems
- CE 255 Highway Traffic Operations
- CE 259 Public Transportation Systems
- CE 260 Air Transportation
- CE 264 Behavioral Modeling for Engineering, Planning, and Policy Analysis

Civil Systems - Large Cyber-Physical Track

This track requires a minimum of 12 units of technical electives from the following list:
- CE 263N Scalable Spatial Analytics
- CE 264 Behavioral Modeling
- CE 271 Sensors and Signal Interpretation
- CE 290L Control and Information Management
- CE C291F Control and Optimization of Distributed Parameters Systems
- CE 295 Energy Systems and Control

Student Affairs Officer:
Shelley Okimoto
(510) 643-8944
okimoto@ce.berkeley.edu
750 Davis Hall

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
Data Science and Systems

Fall 2017
- CS 260A User Interface Design and Development
- CS261 Internet/Network Security
- CS 276 Cryptography
- CS 286A Introduction to Database Systems
- CS 289A Introduction to Machine Learning
- EE227AT Optimization Models in Engineering
- CS 294-130 Special Topics in Deep Learning
- CS294-136 Deep Time-Series Learning and Finance Applications

Spring 2018
- CS 260A User Interface Design and Development
- CS261 Internet/Network Security
- CS 267 Parallel Computing
- CS286A Introduction to Database Systems
- CS289A Introduction to Machine Learning
- CS294-129 Designing, Visualizing and Understanding Deep Neural Networks
- CS294-131 Special Topics in Deep Learning
- CS294-144 Blockchain, Cryptoeconomics, and the Future of Technology

Visual Computing and Computer Graphics

Fall 2017
- EE 218A, Introduction to Optical Engineering
- EE225B, Digital Image Processing
- CS 260A, User Interface Design and Development
- CS 289A, Introduction to Machine Learning
- CS 294-43, Visual Object and Activity Recognition
- CS 294-84, Interactive Device Design
- CS 294-137, Theory and Applications of Virtual Reality and Immersive Computing

Spring 2018
- CS 260A, User Interface Design and Development
- CS 267, Parallel Computing
- CS C280, Computer Vision
- CS 284A, Foundations of Computer Graphics
- CS 289A, Introduction to Machine Learning

Student Affairs Officer:
Michael Sun
(510) 643-8107
msun86@eecs.berkeley.edu
205 Cory Hall

All EECS MEng students should expect to complete four technical courses within the EECS department at the graduate level, the Fung Institute’s engineering leadership curriculum, as well as a Capstone project that will be hosted by the EECS department. At least three of your four technical must be from the lists below. The remaining technical courses should be chosen from your own or another MEng area of concentration within the EECS department.

Note: The courses listed here are from 2017-18 and are not guaranteed to be offered in 2018-19. The course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
Robotics and Embedded Software

Fall 2017
EECS 206A, Introduction to Robotics
EE C220A, Advanced Control Systems
EE C220B, Experiential Advanced Control Design
EE 221A, Linear System Theory
EE C249A, Introduction to Embedded Systems
CS 294-84, Interactive Device Design
CS 294-115, Algorithmic Human-Robot Interaction

Spring 2018
EECS C206B, Robotic Manipulation and Interaction
EE 213A, Power Electronics
EE C222, Nonlinear Systems - Analysis, Stability, and Control
EE 223, Stochastic Systems: Estimation and Control
EE 249B, Design of Embedded Systems: Models, Validation, Synthesis
EE 291E, Hybrid Systems and Intelligent Control
CS 280, Computer Vision

Student Affairs Officer:
Michael Sun
(510) 643-8107
msun86@eecs.berkeley.edu
205 Cory Hall

Note: The courses listed here are from 2017-18 and are not guaranteed to be offered in 2018-19. The course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Fall 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Processing and Communications</td>
<td></td>
</tr>
<tr>
<td>Fall 2017</td>
<td></td>
</tr>
<tr>
<td>EE C215A, Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>EE 218A, Introduction to Optical Engineering</td>
<td></td>
</tr>
<tr>
<td>EE 221A, Linear System Theory</td>
<td></td>
</tr>
<tr>
<td>EE 226A, Random Processes in Systems</td>
<td></td>
</tr>
<tr>
<td>EE 227BT, Convex Optimization</td>
<td></td>
</tr>
<tr>
<td>EE 229A, Information Theory and Coding</td>
<td></td>
</tr>
<tr>
<td>EE C249A, Introduction to Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>CS 260A, User Interface Design and Development</td>
<td></td>
</tr>
<tr>
<td>CS 286A, Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 289A, Introduction to Machine Learning</td>
<td></td>
</tr>
<tr>
<td>EE 290P, Advanced Topics in Bioelectronics</td>
<td></td>
</tr>
<tr>
<td>Spring 2017</td>
<td></td>
</tr>
<tr>
<td>EECS 206B, Robotic Manipulation and Interaction</td>
<td></td>
</tr>
<tr>
<td>EE 219C, Computer-Aided Verification</td>
<td></td>
</tr>
<tr>
<td>EE 223, Stochastic Systems: Estimation and Control</td>
<td></td>
</tr>
<tr>
<td>EECS 227AT, Optimization Models in Engineering</td>
<td></td>
</tr>
<tr>
<td>EE C227C, Convex Optimization and Approximation</td>
<td></td>
</tr>
<tr>
<td>EE 230A, Integrated-Circuits Devices</td>
<td></td>
</tr>
<tr>
<td>EE 240A, Linear Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE242B, Advanced Integrated Circuits for</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>EE C247B Introduction to MEMS Design</td>
<td></td>
</tr>
<tr>
<td>CS 260A, User Interface Design and Development</td>
<td></td>
</tr>
<tr>
<td>CS 280, Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 286A, Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 289A, Introduction to Machine Learning</td>
<td></td>
</tr>
<tr>
<td>EE 291E, Hybrid Systems and Intelligent Control</td>
<td></td>
</tr>
<tr>
<td>EE 290P, Advanced Topics in Bioelectronics</td>
<td></td>
</tr>
<tr>
<td>Physical Electronics and Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>Fall 2017</td>
<td></td>
</tr>
<tr>
<td>EE 218A, Introduction to Optical Engineering</td>
<td></td>
</tr>
<tr>
<td>EE 230A, Integrated-Circuits Devices</td>
<td></td>
</tr>
<tr>
<td>EE 230C, Solid State Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 236A, Quantum and Optical Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 240A, Linear Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 242A, Integrated Circuits for Communications</td>
<td></td>
</tr>
<tr>
<td>EE 247A, Introduction to MEMS Systems</td>
<td></td>
</tr>
<tr>
<td>EECS 251A, Introduction to Digital Design and</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>Spring 2018</td>
<td></td>
</tr>
<tr>
<td>EE 213A, Power Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 219C, Computer-Aided Verification</td>
<td></td>
</tr>
<tr>
<td>EE 230A, Integrated Circuits Devices</td>
<td></td>
</tr>
<tr>
<td>EE 230B, Solid State Devices</td>
<td></td>
</tr>
<tr>
<td>EE 232, Lightwave Devices</td>
<td></td>
</tr>
<tr>
<td>EE 240B, Advanced Analog Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 241B, Advanced Digital Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 242B, Advanced Integrated Circuits for</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>EE C247B, Introduction to MEMS Design</td>
<td></td>
</tr>
<tr>
<td>EECS 251A, Introduction to Digital Design and</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 290C, IC Design Project: 28nm SoC for IoT</td>
<td></td>
</tr>
<tr>
<td>EE 290P, Advanced Topics in Bioelectronics</td>
<td></td>
</tr>
</tbody>
</table>

Note: The courses listed here are from 2017-18 and are not guaranteed to be offered in 2018-19. The course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (IEOR)

Fall 2018

REQUIRED: IEOR 240 (3 units) Optimization Analytics

Computing technology has advanced to the point that commonly available tools can be used to solve practical decision problems and optimize real-world systems quickly and efficiently. This course will focus on the understanding and use of such tools, to model and solve complex real-world business problems, to analyze the impact of changing data and relaxing assumptions on these decisions, and to understand the risks associated with particular decisions and outcomes.

REQUIRED: IEOR 241 (3 units)
Risk Modeling, Simulation, and Data Analysis

Students will develop a fundamental understanding of how randomness and uncertainty are root causes of risk in modern enterprises. The technical material will be presented in the context of engineering team system design and operations decisions.

Spring 2019

Technical Electives (6 units)

220 Economics and Dynamics of Production (3)
221 Introduction to Financial Engineering (3)
222 Financial Engineering Systems I (3)
227B Convex Optimization and Approximation (3)
242 Applications in Data Analysis (3)
250 Introduction to Production Planning and Logistics Models (3)
253 Supply Chain Operation and Management (3)
262A Mathematical Programming I (4)
262B Mathematical Programming II (3)
263A Applied Stochastic Process I (4)
265 Learning and Optimization (3)
266 Network Flows and Graphs (3)
267 Queuing Theory (3)
270 Current Readings in Innovation (3)
290 Fundamentals of Machine Learning & Data Analytics (3)
290R Portfolio and Risk Analytics (3)

Student Affairs Officer:
Yeri Caesar-Kaptoech
(510) 642-7983
ycaesark@berkeley.edu
4137 Etcheverry Hall

Students will take 2 required courses in the Fall and 2 technical electives in the Spring. View course descriptions for details. Required core courses IEOR240 and IEOR 241 can be waived if a student has excelled in prior coursework in the topics. Petitions to request a waiver should be submitted to the IEOR GSAO and faculty advisor.

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (IEOR)

FinTech

Required IEOR Technical Courses:
- IEOR 240 Optimization Analytics (3 units)
- IEOR 241 Risk Modeling, Simulation, and Data Analysis (3 units)
- IEOR 242 Applications in Data Analysis (3 units)

Choose 2 of 4 FinTech Technical Electives:
May be offered in either Fall or Spring
- IEOR 221 Introduction to Financial Engineering (when available) (3 units)
- IEOR 222 Financial Engineering Systems I (3 units)
- IEOR 223 Financial Engineering Systems II (3 units)
- IEOR 224 Portfolio and Risk Analytics (3 units)

ENGIN 296MB Capstone Team Project Course with Professor Guo; or equivalent FinTech project approved by Prof. Guo (5 units)

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
MATERIALS SCIENCE AND ENGINEERING (MSE)

MSE – General Program

Fall Semester Required (4 units)
MSE 200A Survey of Materials Science

Technical Electives I: (3 units)
- MSE 201A Thermodynamics and Phase Transformations in Solids
- MSE 204 Theory of Electron Microscopy and X-Ray Diffraction
- MSE 215 Introduction to Computational Materials Science
- MSE 223 Semiconductor Materials
- MSE 224 Magnetism and Magnetic Materials
- MSE 251 Polymer Surfaces and Interfaces

Spring Semester Technical Electives II & III: (6-7 units)
- MSE 202 Crystal Structure and Bonding
- MSE 205 Defects in Solids
- MSE C212 Deformation, Fracture and Fatigue
- MSE 213 Environmental Effects on Materials Properties and Behavior
- MSE C216 Macromolecular Science in Biotechnology and Medicine
- MSE C225 Thin Film Science and Technology

Student Affairs Officer:
Ariana Castro
210A HMMB
(510) 642-0716
msessa@berkeley.edu

For students wishing to concentrate in the areas of Materials for Energy Systems, Structural Materials, and Opto-Electronic Materials, the faculty has identified specific courses that would be particularly relevant. However, these “Concentrations” are suggestions only. Students are encouraged to select electives that best satisfy their specific educational objectives.

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
MATERIALS SCIENCE AND ENGINEERING (MSE)

MSE – Materials for Advanced Energy Systems

Fall Semester Required (4 units):
 MSE 200A Survey of Materials Science
Technical Electives I (3 units):
 MSE 201A Thermodynamics and Phase Transformations in Solids
 MSE 204 Theory of Electron Microscopy and X-Ray Diffraction

Spring Semester Technical Electives II & III: (6-7 units)
 MSE 202 Crystal Structure and Bonding
 MSE C225 Thin Film Science and Technology

MSE – Advances in Opto-Electronic Materials

Fall Semester Required (4 units):
 MSE 200A Survey of Materials Science
Technical Electives I (3 units):
 MSE 201A Thermodynamics and Phase Transformations in Solids
 MSE 223 Semiconductor Materials
Spring Semester Technical Electives II & III: (6-7 units)
 MSE 202 Crystal Structure and Bonding
 MSE C225 Thin Film Science and Technology

MSE – Advanced Structural Materials

Fall Semester Required (4 units):
 MSE 200A Survey of Materials Science
Technical Electives I (3 units):
 MSE 201A Thermodynamics and Phase Transformations in Solids
 MSE 204 Theory of Electron Microscopy and X-Ray Diffraction
 MSE 215 Introduction to Computational Materials Science
Spring Semester Technical Electives II & III: (6-7 units)
 MSE 202 Crystal Structure and Bonding
 MSE C212 Deformation, Fracture and Fatigue

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
MECHANICAL ENGINEERING (ME)

Advanced Energy Technology

Fall Technical Electives
- Mech Eng 246 – Advanced Energy Conversion Principles
- Mech Eng 255 – Advanced Combustion Processes
- Mech Eng 292E – Advanced Special Topics in Energy Science and Technology
- Mech Eng 252 – Heat Convection
- Mech Eng 256 – Combustion
- Mech Eng 259 – Microscale Thermophysics and Heat Transfer

Modeling and Simulation of Physical Processes and Systems

Fall Technical Electives
- Mech Eng 224 – Mechanical Behavior of Engineering Materials
- Mech Eng 280A – Introduction to the Finite Element Method (required)
- Mech Eng 290D – Solid Modeling and CAD/CAM Fundamentals

Spring Technical Electives
- Mech Eng C201 – Modeling and Simulation of Advanced Manufacturing Processes (required)
- Mech Eng 229 – Design of Basic Electro-Mechanical Devices
- Mech Eng 280B – Finite Element Methods in Nonlinear Continua

Student Affairs Officer:
Isabel Blanco
(510) 642-6780
6189 Etchevery Hall
miblanco@berkeley.edu

12 semester units required: must be in 200 series and letter graded. Below is a tentative schedule of classes.

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
MECHANICAL ENGINEERING
(ME)

Experiential Advanced Control Systems Design

Fall Technical Electives
- Mech Eng C231A/El Eng C220 B - Experiential Advanced Control Design 1
- Mech Eng C232 / El Eng C220A - Advanced Control Systems

Spring Technical Electives
- Mech Eng C231B / El Eng C220C - Experiential Advanced Control Design II
- Mech Eng 233 - Advanced Control Systems II
- Mech Eng 235 - Design of Microprocessor - Based Engineering

Product Design

Fall Technical Electives
- Mech Eng C224 - Mechanical Behavior of Engineering Materials
- Mech Eng C231A / El Eng C220B - Experiential Advanced Control Design I
- Mech Eng 239 - Topics in Manufacturing
- Mech Eng 290KA - Innovation through Design Thinking
- Mech Eng 290KB - Life Cycle Thinking in Engineering Design

Spring Technical Electives
- Mech Eng 229 - Design of Basic Electro-Mechanical Devices
- Mech Eng 235 - Design of Microprocessor - Based Engineering

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.
NUCLEAR ENGINEERING (NE)

Fall 2018 Technical Electives
210M Nuclear Reactions and Radiation
204 Advanced Concepts in Radiation Detection and Measurement
255 Numerical Simulation in Radiation Transport
290C Special Topics in Nuclear Energy

Spring 2019 Technical Electives
201 Nuclear Reactions and Interactions of Radiation with Matter
230 Analytical Methods for Non-Proliferation
220 Irradiation Effects in Nuclear Materials
265 Design Analysis of Nuclear Reactors
280 Fusion Reactor Engineering
285C Nuclear Security: The Nexus Between Policy and Technology

Student Affairs Officer:
Kirsten Wimple
(510) 642-5760
kirstenw@berkeley.edu
4149 Etcheverry Hall

Meet with your faculty advisor to discuss your proposed course plan and sign up for at least two 200-level NE graduate courses.

Note: The courses listed here are not guaranteed to be offered, and the course schedule may change without notice. Refer to the UC Berkeley Course Schedule for further enrollment information.