
Processing USPTO Patent Data

Gabe Fierro
Coleman Fung Institute for Engineering Leadership

UC Berkeley
fierro@eecs.berkeley.edu

March 28, 2014

Abstract

We describe a completely automated data process designed to consume weekly releases of
patent grants and applications distributed by the United States Patent and Trademark Office
(USPTO). The process downloads and unpacks the zipped distribution files, parses the raw data
into a SQL database, and performs various disambiguations and statistical calculations on the
database.

1 Introduction

Patent data plays an invaluable role in research into economic trends, invention, innovation policy
and technology strategy. Since the digitization of patent data starting in 1975, though patent
data has been freely available through the United States Patent and Trademark Office, it has
been difficult to use. We present a substantial improvement in data quality and accessibility over
previous third-party re-releases of US patent data. This will not only facilitate further research on
up-to-date patent records, but also increase the reproducibility of previous research results.

2 Processing Workflow

The Fung Institute has developed a robust and fully automated toolchain for processing and pro-
viding high quality patent data intended for research, as illustrated in Figure 1.

As data is downloaded from the USPTO weekly patent releases, it is parsed, cleaned and inserted
into a SQL database. From this database, assignee and lawyer disambiguations are performed
and the patents are geocoded with a location-based disambiguation. The output data from these
processes are combined with the historical data from the Harvard Dataverse Network into a single
consolidated database. From this database, an inventor-level disambiguation can be performed,
and various applications can take advantage of the completed data.

3 Data Sources

The unified patent dataset is composed of processed data from two separate sources: the Harvard
Dataverse Network (DVN) [12] collection of patent data from 1975 through 2010 and the weekly
distributions of Google-hosted USPTO records [9][10].

1

Figure 1: Full patent data process flow

3.1 Harvard DVN

The Harvard DVN patent database consists of data drawn from the National Bureau of Economic
Research (NBER), weekly distributions of patent data from the USPTO, and to a small extent, the
1998 Micropatent CD product [13]. The schema of the database can be found in the Appendix.

While the Harvard DVN patent database was, prior to the UC Berkeley patent database,
the most extensively complete amalgamation of United States patent data, it is not without its
problems. Firstly, there is little information as to the actual meanings of the columns in the
databases. Without sufficient prior knowledge of patent structure, it is difficult to glean the semantic
significance of each column. The names alone are often abbreviated and hard to discern. Secondly,
because the DVN database is a combination of several sources into a single database schema, certain
patent entries from NBER and Micropatent are incomplete where their data source did not provide
all the requisite data. The data obtained from the weekly distributions suffers from being made
available in several different formats. The parser that was developed to handle the data is overly
complicated and does not handle edge cases well, resulting in missing patent metadata where the
parser did not account for a subtle change in format [1]. This is analyzed in greater detail below.

3.2 USPTO Weekly Distributions

The USPTO distributions take the form of zip archives containing concatenated XML (Extensible
Markup Language) documents, each of which contains the full text of each patent grant and patent
application issued every week. Prior to 1975, the USPTO used a purely paper-based system before

2

Time Span Data Format

-1974 paper-based
1975 unknown. Data obtained from Micropatent
1976 - 2001 Green Book (CITE) APS key-value
2001 SGML ST. 32 v2.4
2002 - 2004 Red Book (CITE) XML ST. 32 v2.5
2005 Red Book XML ST. 36 (ICE) v4.0
2006 Red Book XML ST. 36 (ICE) v4.1
2007 - 2012 Red Book XML ST. 36 (ICE) v4.2
2013 Red Book XML ST. 36 (ICE) v4.3
2013 - Red Book XML v4.4

Table 1: Table of USPTO grant data formats

Time Span Data Format

-2001 paper-based
2001 XML ST. 32 v1.5
2002 - 2004 Red Book (CITE) XML ST. 32 v1.6
2005 Red Book XML ST. 36 (ICE) v4.0
2006 Red Book XML ST. 36 (ICE) v4.1
2007 - 2012 Red Book XML ST. 36 (ICE) v4.2
2013 - Red Book XML ST. 36 (ICE) v4.3

Table 2: Table of USPTO grant data formats

transitioning to a raw-text key-value and later SGML-based key-value store 1. Patent documents
were made available in the XML format starting in 2001. Although this data is made freely available,
the fact that digital USPTO patent data spans eight different formats and occupies more than 70
GB (compressed) over the 37 years of its existence makes rendering the data into an amenable form
a nontrivial problem (see Table 1 and Table 2). Patent application data, though only available in
a digital format back to 2001, is nonetheless available in six different formats [14] [15].

4 Parsing

The process of converting the public patent data into a usable form begins with parsing, the
manipulation of a document’s grammar and anatomy to extract structured and labeled data. The
Fung Institute parser takes as input the weekly USPTO patent distributions and outputs the
relevant data into a SQL database. To simplify the problem of parsing the diversity of formats
of digital patent data, the current parser addresses only the XML-based documents. At time of
writing, the Fung Institute parser is capable of handling patent grants of formats XML v4.0, v4.1,
v4.2, v4.3 and v4.4 (spanning 2005 through 2013) and patent applications of formats XML v1.5,
v1.6, v4.0, v4.1, v4.2 and v4.3 (spanning 2001 through 2013). Grant data prior to 2005 is drawn
from a truncated version of the Harvard DVN database.

The code is written in Python 2 [7] and is available on Github [2].

1Standard Generalized Markup Language

3

<applicants>

<applicant sequence="001" app-type="applicant-inventor">

<addressbook>

<last-name>Roach</last-name>

<first-name>Richard</first-name>

<address>

<city>Schaumburg</city>

<state>IL</state>

<country>US</country>

</address>

</addressbook>

</applicant>

<applicant sequence="002" app-type="applicant-inventor">

...

</applicant>

</applicants>

Figure 2: Sample inventor element from XML v4.2 schema

4.1 XML Overview

XML, or Extensible Markup Language, defines a set of rules for encoding documents that seek to
facilitate comprehension by both machines and humans. Since the publishing XML 1.0 standard
in 1996, the format gained traction due to the minimal size and flexible structure. In its simplest
form, an XML document is a collection of elements, which are each composed of tags and content.
Tags, such as <citation>, lend semantic structure to a document and allow a reader to determine
the significance of the content that follows. An element is a logical component that begins and
ends with tags (e.g. <citation> and </citation>) and contains either regular text or additional,
nested elements. An example of an element can be found in Figure 2.

4.2 Parser Method

The Fung Institute parser adopts a novel approach to the problem of extracting data from XML
documents. As XML documents are fed to the parser, they are transformed from XML’s canonical
tree-based organization into modified Python dictionaries. Typical XML parsers must make certain
assumptions about the nesting and placement of tags and must contain careful allowances for
missing, mislabeled, or unexpected tags. The Fung Institute parser circumvents this issue by not
requiring a detailed specification of the data to be extracted, instead relying on general descriptors
of the location of needed data. This makes the parser more robust and able to handle small
schema changes without adjustment, therefore reducing the number of potential runtime errors.
The existence of such an engine also expedites the development of additional parsers that handle
subsequent changes to the USPTO patent XML schemas.

The XML parsing engine reduces the amount of explicit error checking code while making the
source code concise and easy to understand. The engine is easily configurable, and can be directed
to automatically download and parse patents in a given date range, apply arbitrary post parsing
steps, and deliver the results to a database.

4

4.3 Data Idiosyncracies

While the USPTO patent data is public and freely available, it is not without its problems.
There is inconsistent usage of HTML idioms and escaping. Underscores, ampersands, emdashes

and brackets – to name a few – are not expressed as literal characters in the raw XML, and care must
be taken to translate sequences such as & and _{—} so that the extracted
data is human-readable.

Accents within names are irregularly represented and follow differing standards. Accented
letters are either missing (e.g., “Rémy” becomes “R my”) or replaced by description (e.g. “Rémy”
becomes ”R acute over e my”) or replaced by the same letter without accent (e.g., “Rémy” becomes
“Remy”). All three versions of the name “Rémy” are found across the DVN databases and USPTO
weekly publications.

Last name prefixes such as “van der” and titles such as “Esquire” are varyingly included in
either the <first-name> or <last-name> tags, which complicates the parsing of names into a
consistent form.

The document numbers of patents are inconsistently prefixed with letters representing the type
of document, and are occasionally padded with a leading “0”. These eccentricities exacerbate the
logical complexity of the parser, but must be handled in order to maintain consistent notation that
enables the reliable tracking of references to documents.

These issues are handled by the Fung Institute parser, and are discussed at length in a previous
Fung Institute publication [3].

5 Database

One of the main purposes of the patent processor project is to provide a usable database of relevant
patent data. This database should facilitate the retrieval of patent records, citations, inventors,
lawyers, assignees, and other patent-related data. The linked nature of these types of records
suggests that a relational database model would be most suited to the data, which motivated the
decision to model patent data in SQL. SQL, or Structured Query Language, is a language designed
for managing data held in a relational database.

Because the majority of the data processing pipeline is written in Python, it is hard to inte-
grate otherwise easy-to-use SQL code. There are multiple flavors of SQL – among them, SQLite
and MySQL. SQLite simplifies local development because the whole database is represented as a
single efficiently-sized file that can be copied, moved and manipulated much like a traditional file.
However, it is hampered by a lack of support for more complex SQL features, and has poor support
for concurrent users (e.g. multiple processes attempting to access the same database). MySQL
offers advanced SQL features (such as LEFT OUTER JOIN) and scales to multiple users and large
amounts of data much easier than SQLite, but requires more specialized knowledge to use and
access. MySQL is more suited for production environments, whereas SQLite is better for devel-
opment. We want to be able to easily switch between these two flavors of SQL depending on our
purpose without having to develop multiple branches of database integration.

5.1 SQLAlchemy

SQLAlchemy [6] is a Object Relational Mapper (ORM) for Python that seeks to abstract away the
differences between SQLite, MySQL, and other SQL-based relational databases. The SQLAlchemy

5

query = ‘ s e l e c t ∗ from Patent where \
number = ‘ ‘%s ’ ’ ’ % patent number

r e s u l t = connect ion . execute (query)
pa t en t id = r e s u l t [3]
query = ’ s e l e c t ∗ from a s s i g n e e \

where pa t en t id = ‘ ‘%s ’ ’ ’ % pat en t id
connect ion . execute (query)

Figure 3: Finding assignees for a patent using traditional Python-SQL

patent = s e s s i o n . query (Patent) .
f i l t e r b y (number = patent number)

patent . a s s i g n e e s

Figure 4: Finding assignees for a patent using SQLAlchemy

ORM maps Python classes to an underlying SQL database such that the database can be manipu-
lated as though it were a native Python object. This means that the object model and the database
schema can be decoupled, effectively removing the need for separate lines of development for each
possible database engine.

Database-related code written using SQLAlchemy is much cleaner and easier to work with than
the traditional, kludgy idioms. In the case of SQLite, the normal Python module requires the user
to execute strings of SQL code:

query = ‘ s e l e c t ∗ from Patent where \
number = ‘ ‘%s ’ ’ ’ % patent number

connect ion . execute (query)

Not only does this require the programmer to know SQL syntax, but this paradigm leaves
the database open to SQL injection, wherein unintended and possibly malicious code is exe-
cuted on the SQL database. For example, here, we are operating on the assumption that the
variable patent_number contains a valid patent number. It could actually contain the string
’’; delete from Patent;--, which would terminate the original select statement, delete all
entries from the Patent table, and then exit as though nothing had happened. To avoid such
attacks, it is necessary to sanitize all SQL strings to make sure they contain valid and safe queries.

SQLAlchemy obviates the need to implement such verbose security methods. The SQLAlchemy
equivalent to the above query is:

s e s s i o n . query (Patent) .
f i l t e r b y (number = patent number)

Immediately, we can see that this code is much simpler and cleaner. When SQLAlchemy accepts
string input, as with the patent_number variable here, it automatically escapes all significant
characters like semicolons and apostrophes, essentially nullifying the possiblity of SQL injection
attacks.

SQLAlchemy further simplifies the handling of foreign keys and complex joins between tables,
and can even implement these features over database engines (such as SQLite) that do not normally

6

10/18/13 database-simplified.svg

file://localhost/Users/gabe/Documents/Patent/patentprocessor/latex/figs/database-simplified.svg 1/1

Patent

Lawyer

<lawyers,

patents>

Assignee

<assignees,

patents>

Inventor

<patents,

inventors>

RawLawyer

<rawlayers,

lawyer>

RawInventor

<inventor,

rawinventors>

RawAssignee

<assignee,

rawassignees>

Location
<assignees,

locations>

<locations

inventors>

RawLocation

<location,

rawlocations>

<rawlocations,

rawinventor>

<rawassignee,

rawlocations>

USPC

<classes,

patent>

Citation

IPCR

<ipcrs,

patent>

MainClass

<mainclass,

uspc>

SubClass

<subclass,

uspc>

USRelDoc

<patent,

usreldocs>

reldocs>

OtherReference

<patent,

otherreferences>

Application

<application,

patent>

<patent,

citations>

citedby>

<patent,

rawassignees>

<patent,

rawinventors>

<rawlawyers,

patent>

Figure 5: High level view of new database schema

have them. Consider Figure 3 versus Figure 4.

5.2 Limitations

The nice features of SQLAlchemy come at a price. The higher level interface to the SQL database
requires a nontrivial amount of bookkeeping. Foreign keys lookups and checks introduce a certain
amount of overhead, so when a process loops through a list of database items, multiple SQL queries
can be executed against the backend for each object if the process asks for linked objects.

SQLAlchemy offers tools to help reduce the number of individual queries sent to the underlying
database, but there is an inescapable overhead to using an ORM over the raw SQL.

5.3 New Schema

We wanted to have a highly-linked database that would make it easy for developers to access related
information for a given set of patents. The DVN schema, as described in the Appendix, does not
take advantage of foreign key relations, and places much manual burden on the user. This was a
primary motivating factor in our design, which is summarized in Figure 5.

5.4 Raw vs Processed

If we examine the new database schema, for each of the inventor, lawyer, location, and assignee

tables, we can see a “raw” version (e.g. rawinventor) and a plain version. The raw tables contain
the inventor, lawyer, location and assignee records as they appear in the USPTO files, which means
that the naming inconsistencies and misspellings are preserved. These records are run through
disambiguation methods of various degrees of rigor, and the cleaned records are stored in the plain
tables. See below for a description of these disambiguation methods.

7

Table Access Value

Patent patent US8434162
Inventor patent.inventors[0] Thomas H. Stachler
Raw Location patent.inventors[0].rawlocation Deyton, OH, US
Clean Location patent.inventors[0].location Dayton, OH, US

Table 3: Accessing related raw and clean records. Note the spelling correction in the clean record

When the cleaned records are inserted, we link them to both the related patent and the raw
version using foreign keys in the database, so it is simple to examine groups of related records. See
Table 3.

6 Disambiguations

One of the primary problems with conducting meaningful research with USPTO patent data is
the high variability in quality. Cities are misspelled or mislisted. Organizations are alternatively
abbreviated and listed in full with little modicum of consistency. Inventors, lawyers and assignees
will misspell their names, change their names and unpredictably list their middle initials or names.
The Berkeley patent database provides facilities to account for these errors, and codifies the dis-
ambiguation of such records in order to make possible their accurate retrieval.

6.1 Geocoding

There are over 12 million locations listed in the USPTO patent weekly downloads from 1975 to 2013,
with 350,000 unique tuples of (city, state, country). These tuples follow the typical motif of
data problems in the rest of the patent data: incorrect or nonstandard country codes, inconsistent
romanization of foreign locations and various misspellings. We resolved the ambiguities in the
location data using a propietary disambiguation technique developed by Google. When new patent
data is processed, we run a series of data cleaning processes to correct for some of the common
errors, then cross reference with the lookup table [4] obtained through the Google disambiguation.

A detailed analysis of the problems with USPTO location data and our handling of locations can
be found through a related Fung Institute publication [5]. The process primarily uses a lookup table
to find disambiguated locations for the raw inputs. However, some locations are too ambiguous to
be matched to a real-world latitude and longitude, so not all rawlocations have a matching location.

Locations are associated with assignees, inventors and lawyers. Typically, a patent record’s
“location” is the location of the first inventor listed on the patent.

6.2 Assignees

For a given patent, the assignees are the entities (either organizations or individuals) that have
property rights to the patent. The assignee records are imperative for firm-level analysis of patent
data, and are used for tracking ownership of patents. The weekly releases of patent documents
only contain the original assignee of a patent when it was initially granted.

However, it is difficult to obtain accurate results for simple (and necessary) questions such as
“which patents are owned by firm X?” because of the pandemic inconsistency of spellings. A cursory
search for assignee records that resemble General Electric yields the following:

8

• General Electric Company

• General Electric

• General Electric Co..

• General Electric Capital Corporation

• General Electric Captical Corporation

• General Electric Canada

• General Electrical Company

• General Electro Mechanical Corp

• General Electronic Company

• General Eletric Company

This is not even a complete list of all the (mis)representations of General Electric, but already we
can see the potential issues with trying to get accurate results.

We do not yet provide fully featured entity resolution for assignee records, but we do maintain
a preliminary disambiguation of the records that corrects for minor misspellings. We do this by
applying the Jaro-Winkler [8] string similarity algorithm to certain pairs of raw assignee records.
Two records that are within a certain bound of similarity are considered the same, and are linked
together.

It is not tractable to perform pairwise computation on each of the 5,850,531 raw assignee records
in the database (at time of writing), so we group the assignees by their first letter, and then perform
the pairwise comparisons within each of these blocks. This allows us to hold a smaller chunk of the
assignees in memory at each step, with approximate accuracy.

First, all assignees are associated with a “clean identifier”, which consists of the organization
name (or concatenated first and last names) of the assignee, lower cased, with all non-letter and
non-whitespace characters removed. This simplifies the comparison process. Following this nor-
malization, all assignees are placed into a block according to the first letter of their clean identifier.

Disambiguation occurs within blocks, resulting in a set of “pools” indexed by a central assignee
and containing assignees that are within some Jaro-Winkler threshold of that central assignee. As
assignees are popped off the end of the list of non-disambiguated assignees, they are compared
against each of the central assignees. If their clean identifier is within the Jaro-Winkler threshold
of some central assignee, then the candidate is placed in that pool; else, it is placed into a new pool
of which it is the only member. This continues until all assignees are placed into a pool. A record
is chosen from the pool to act as the disambiguated record for that pool, and all rawassignees are
linked to that disambiguated record.

There is obvious room for improvement in this algorithm – including more global string compar-
isons and the leveraging of additional metadata to further group and lump assignees – but due to
current computational constraints, it is not possible to implement these changes within the current
framework. This disambiguation delivers a decent fix for the various misspellings occurred in the
database.

9

6.3 Lawyers

The raw lawyer records follow much of the same deficiencies in quality as the assignee records.
Again, we only offer a preliminary disambiguation of lawyer records using the same algorithm as
described above, but future development will yield more accurate results.

The assignee disambiguation has yet to be implemented for the lawyer record tables.

6.4 Inventors

We provide a polished disambiguation mechanism for inventor records. Using the published name
of an inventor, the patent technology class, co-inventor names, published location and original
assignee, we are able to infer with more than 95% accuracy which inventor records are the same
across all records in the patent database.

More explicitly, the disambiguation algorithm uses the full name of an inventor, the primary
main and sub classifications for a patent at time of issue, the disambiguated location for the inventor
and the disambiguated original assignee.

A detailed summary of our technique can be found through a related Fung Institute publica-
tion [11].

6.5 Creation of Disambiguated Records

When raw records are condensed into a single disambiguated record, some process must be followed
for determining what that disambiguated record is. This process differs across the disambiguation
processes.

The inventor disambiguation takes the most common first/last name pair for a block of rawinventors
and assigns that to be the disambiguated name. The assignee and lawyer disambiguations iterate
through each pool of grouped records – starting with the central record – and take the first non-null
organization or first/last name pair for the disambiguated record. The location disambiguation uses
the groundtruth obtained from the Google disambiguation to form its records.

7 Statistics

Many research applications of patent data require records from multiple tables to be linked together:
for instance, finding all citations made to a patent, or finding all patents for an inventor. Due to
the size of the database, however, gathering all the requisite data and linking it together takes a
nontrivial amount of time. To facilitate some common research vectors, we provide three tables of
precompiled statistics.

The FutureCitationRank table contains the rank of each patent by the number of future
citations in each year. This answers the question “in year X, patent number Y got Z citations. It
was the Nth most cited patent that year”.

The InventorRank table contains the rank of each inventor by how many patents they have
been granted in a given year.

The CitedBy table contains the direct mapping of a focal patent to all patents that cite that
patent.

10

8 Relationships

Here we include entity-relationship diagrams (ERDs) that focus on subsets of the database, to
better explain the one-to-many and one-to-one connections between tables in the database. A
table is indicated by a box (the name of the table is in the header), and connections between
tables are indicated by dotted lines. A dotted line with a dot at either end indicates a one-to-one
relationship, meaning that the rows in one table map perfectly onto the rows in the other table
without overlap. A dotted line with a fork at one end indicates a one-to-many relationship, where
the rows of the “one” table potentially map onto several rows of the “many” table.

Patent Attributes

As seen below, each patent has a one-to-many relationship with its citations, classes, claims and
application records. Citations (uspatentcitation, foreigncitation, usapplicationcitation
and otherreference) are listed in the database in the same order they are listed in the patent file
(as indicated by the sequence column in those tables). This is also the case for claims in the claim

table. Patent classifications exist in the uspc table, and are listed in order by the sequence column,
separated into main- and sub-classifications. Each patent also has an entry in the application

table, which contains metadata about the related application for the granted patent document,
including filing date and application number. This application number can be used as a foreign
key into the application database to obtain information for the inventors, claims, etc listed on the
application document.

Patent Entities

Here we explore the relationships between patents and inventors, lawyers and assignees. Patents
have many rawlawyers, rawinventors and rawassignees. These relations are pulled directly from
the USPTO XML files, that is, an instance of a rawinventor belongs to a particular instance of
a patent, and no other records. As we will explore below, each of the rawlawyer, rawinventor
and rawassignee records is linked to a disambiguated record of the same type (rawassignee to
assignee, for example).

Inventors

Expanding upon the patent-entity diagram above, we look at how inventor-related records are
treated in the database. Patents have multiple inventors (order is, again, indicated by the sequence
column in the rawinventor table) that are placed in the rawinventor table. When the inventor
disambiguation is run, each rawinventor is linked with a disambiguated inventor record in the
inventor table. As indicated in the ERD below, multiple rawinventors can be associated with a
single inventor. Each rawinventor record also has a rawlocation record, which is the location
of that inventor as listed on the associated patent. Likewise, each rawlocation is linked with
a disambiguated location record in the location table after the geolocation disambiguation is
performed. The linking table location_inventor maintains the rawinventor-rawlocation pair-
ing, but uses the disambiguated records instead. Currently, the table contains all unique pairs of
inventor and location as listed together on a patent document, in the order from oldest patent
to newest patent. Keep in mind that because not all raw locations have disambiguated locations,

11

Figure 6: Patents with citations, claims, applications and classes

12

Figure 7: Patents with Inventors, Assignees and Lawyers

13

not all inventors will have disambiguated locations.The patent_inventor linking table mirrors the
relationship of rawinventor to patent, but uses the disambiguated inventor record.

Figure 8: Inventor-related tables

Assignees

The relationships between raw and disambiguated assignee records follow the same logic as the
inventor records above.

Lawyers

The relationships between raw and disambiguated lawyer records follow the same logic as the
assignee and inventor records above, with the exception that patent documents do not contain
location information about lawyers.

14

Figure 9: Assignee-related tables

Figure 10: Lawyer-related tables

15

References
[1] Fung Institute Patent Group. https://github.com/funginstitute/patentprocessor/tree/old_parser, 2012.

[2] Fung Institute Patent Group. https://github.com/funginstitute/patentprocessor/, 2013.

[3] Gabe Fierro . Extracting and Formatting Patent Data from USPTO XML . Tech. rep., Fung Institute; UC Berkeley ,
2013.

[4] Jeffrey Oldham, Kevin Johnson, Google Inc. https://s3.amazonaws.com/fungpatdownloads/geolocation_data.7z,
2013.

[5] Kevin Johnson . Geocoding Patent Data. Tech. rep., Fung Institute ; UC Berkeley, 2013.

[6] Michael Bayer, SQLAlchemy . http://www.sqlalchemy.org/, 2013.

[7] Python Software Foundation. http://www.python.org/, 2013.

[8] William E Winkler . Overview of Record Linkage and Current Research Directions . Tech. rep., Statistical Research
Division, U.S. Census Bureau , 2006.

[9] Google Inc. http://www.google.com/googlebooks/uspto-patents-grants-text.html, 2013.

[10] Google Inc. http://www.google.com/googlebooks/uspto-patents-applications-text.html, 2013.

[11] Guan-Cheng Li . Disambiguation of Inventors, USPTO 1975-2013 . Tech. rep., Fung Institute ; UC Berkeley , 2013.

[12] Lai, R., D’Amour, A., Yu, A., Sun, Y., and Fleming, L. Disambiguation and co-authorship networks of the u.s. patent
inventor database (1975 - 2010).

[13] MicroPatent. http://www.micropat.com/static/index.htm, 1998.

[14] United States Patent and Trademark Office. http://www.uspto.gov/products/xml-resources.jsp, 2013.

[15] United States Patent and Trademark Office. http://www.uspto.gov/products/xml-retrospective.jsp, 2013.

16

Appendix

Harvard DVN Database Schemas

Column Name Column Description

Patent Patent owned by assignee
AsgType Unknown
Assignee Name of assignee
City City location of assignee
State State location of assignee
Country Country of assignee
Nationality Nationality of assignee
Residence Street address of assignee
AsgSeq Order of assignee as appears in patent

Table 1: DVN table schema for assignees

Column Name Column Description

Patent Patent making the citation
Cit_Date Date of cited document
Cit_Name Unknown
Cit_Kind Type of cited document
Cit_Country Origin of cited document
Citation Number or ID of cited document
Category Unknown
CitSeq Order of citation as appears in patent

Table 2: DVN table schema for citations

1

Column Name Column Description

Patent focal Patent
Prim Order of classification
Class USPTO technology class
SubClass USPTO technology subclass

Table 3: DVN table schema for classes

Column Name Column Description

Patent Patent owned by inventor
Firstname Inventor’s first name
Lastname Inventor’s last name
Street Inventor street address
City Inventor city
State Inventor state
Country Inventor country
Zipcode Inventor zipcode
Nationality Inventor nationality
InvSeq Order of inventor as listed on patent

Table 4: DVN table schema for inventors

Column Name Column Description

Patent Patent number
Kind Unknown
Claims Number of claims made by patent
AppType Unknown
AppNum Application reference number
GDate Date of grant
GYear Year of grant
AppDate Date of application
AppYear Year of application
PatType Type of patent (Reissue, Utility, etc)

Table 5: DVN table schema for patents

Column Name Column Description

Patent focal Patent
Abstract Patent abstract
Title Patent title

Table 6: DVN table schema for patent descriptions

2

Column Name Column Description

Patent focal Patent
Firstname Lawyer’s first name
Lastname Lawyer’s last name
LawCountry Location of lawyer
OrgName Name of law firm or organization
LawSeq Order of lawyer as listed in patent

Table 7: DVN table schema for lawyers

Column Name Column Description

Patent focal Patent
Descrip Description of scientific reference
CitSeq Order of citation as appears in patent

Table 8: DVN table schema for scientific references

Column Name Column Description

Patent focal Patent
DocType Type of related document
OrderSeq Order of document as appears in patent
Country Country of origin for related document
RelPatent Patent number of related document
Kind Unknown
RelDate Date of related document
Status Status of related document

Table 9: DVN table schema for US related documents

3

Fung Institute Patent Database Schemas

Column Name Column Description

id Unique identifier for application record
patent_id Corresponding granted patent record
type Type of patent application
number Patent application document identifier
country Country in which application was filed
date Date of application submission

Table 10: Application – information on the application for a granted patent

Column Name Column Description

id Unique identifier for disambiguated Assignee record
type USPTO code for type of assignee
name_first First name of assignee (if individual)
name_last Last name of assignee (if individual)
organization Name of assignee’s organization (if firm)

Table 11: Assignee – disambiguated records for the original patent assignee

4

Column Name Column Description

uuid Unique identifier for raw assignee record
patent_id Patent which contains this record
assignee_id Identifier of disambiguated assignee record
rawlocation_id Location of raw assignee
type USPTO code for type of assignee
name_first First name of assignee (if individual)
name_last Last name of assignee (if individual)
organization Name of assignee’s organization (if firm)
sequence Order in which this assignee was listed on the patent

Table 12: RawAssignee – raw records for the original patent assignee. Fields
exist as they are listed on the original XML document.

Column Name Column Description

patent_id Patent being cited
citation_id Document citing the focal patent
year Year the citation was made

Table 13: CitedBy – precompiled table of future citations

Column Name Column Description

uuid Unique identifier for claim record
patent_id Corresponding patent document for this claim
text Text of claim
dependent Sequence number of claim this record is dependent on
sequence Order in which this claim appears in its patent

Table 14: Claim – full text of patent claims

Column Name Column Description

uuid Unique identifier for citation relation
patent_id Patent making a citation
date Date of patent making the citation
name Name of foreign citation
kind Kind of document being cited
number Document identifier of cited document
country Country of origin of cited document
category Type of citation to cited document
sequence Order in which the focal patent cited the document

Table 15: ForeignCitation – citations made to foreign patents

5

Column Name Column Description

patent_id Patent being ranked
num_citations Number of citations the patent received in the given year
year Focal year
rank Rank 1 means the patent was the most cited document in the given year

Table 16: FutureCitationRank – rank of each patent by the number of future
citations in each year

Column Name Column Description

id Unique inventor identifier for disambiguated record
name_first First name of inventor
name_last Last name of inventor
nationality Nationality of inventor

Table 17: Inventor – disambiguated inventor records

Column Name Column Description

id Unique raw inventor identifier
patent_id Patent which contains this record
rawlocation_id Location of raw inventor
name_first First name of inventor
name_last Last name of inventor
nationality Nationality of inventor
sequence Order in which this inventor was listed on the patent

Table 18: RawInventor – raw inventor records

Column Name Column Description

inventor_id Inventor being ranked
num_patents Num of patents attributed to inventor in the given year
year Focal year
rank Rank 1 means the inventor was granted the most patents in the given year

Table 19: InventorRank – rank of each inventor by how many patents they
were granted in each year

6

Column Name Column Description

id Unique lawyer identifier
name_first First name of lawyer (if individual)
name_last Last name of lawyer (if individual)
organization Name of firm (if not individual)
country Country on record of lawyer

Table 20: Lawyer – disambiguated lawyer records

Column Name Column Description

id Unique lawyer identifier of raw record
name_first First name of lawyer (if individual)
name_last Last name of lawyer (if individual)
organization Name of firm (if not individual)
country Country on record of lawyer
sequence Order in which this lawyer was listed on the patent

Table 21: RawLawyer – lawyers that worked on the given patent

Column Name Column Description

id Unique location identifier
city Disambiguated city name
state Disambiguated state name
country Disambiguated country
latitude Latitude of disambiguated location
longitude Longitude of disambiguated location

Table 22: Location – disambiguated location data for assignees and inventors

Column Name Column Description

id Unique location identifier
city Raw city name
state Raw state name
country Raw country

Table 23: RawLocation – raw location data for assignees and inventors

Column Name Column Description

id USPTO code for main class
title Title of USPTO main class
text Description of USPTO main class

Table 24: MainClass – reference table for definitions of USPTO main classes.

7

Column Name Column Description

uuid Unique identifier for citation relation
patent_id Patent making a citation
text Description of citation
sequence Order in which the focal patent cited the document

Table 25: OtherReference – citations made to non-patent documents

Column Name Column Description

type Category of patent, e.g. “design”, “reissue”
number Unique patent document number
country Country of origin of patent
date Date of grant of patent
abstract Text of patent abstract
title Text of patent title
kind USPTO code for type of patent
num_claims number of claims made by patent

Table 26: Patent – granted patent records

Column Name Column Description

id USPTO code for subclass
title Title of USPTO subclass
text Description of USPTO subclass

Table 27: SubClass – reference table for definitions of USPTO subclasses

Column Name Column Description

uuid Unique identifier for citation relation
patent_id Patent making a citation
date Date of patent making the citation
name Name of US appliation citation
kind Kind of document being cited
number Document identifier of cited document
country Country of origin of cited document
category Type of citation to cited document
sequence Order in which the focal patent cited the document

Table 28: USApplicationCitation – citations made to US patent applications

8

Column Name Column Description

uuid Unique identifier for citation relation
patent_id Patent making a citation
date Date of patent making the citation
name Name of US patent citation
kind Kind of document being cited
number Document identifier of cited document
country Country of origin of cited document
category Type of citation to cited document
sequence Order in which the focal patent cited the document

Table 29: USPatentCitation – citations made to US granted patents

Column Name Column Description

uuid Unique identifier for this relation
patent_id Patent with this classification
mainclass_id USPTO main class
subclass_id USPTO subclass
sequence Order in which this classification was listed on the document

Table 30: USPC – US patent classes. Classes listed are classes at issue. The
database does not contain updated classifications.

Column Name Column Description

uuid Unique identifier for this relation
patent_id Focal patent
doctype Type of related document
status Status of relation
date Date of related document
number Identifier of related document
kind Kind of relation
country Country of related document
sequence Order in which this related document was listed on the document

Table 31: USRelDoc – US Related Documents

9

