
Patent Database Search Tool

Aditya Kaulagi, Gabe Fierro
Coleman Fung Institute for Engineering Leadership

UC Berkeley
aditya15@berkeley.edu, fierro@eecs.berkeley.edu

December 9, 2013

Abstract

In this document, I describe the process of
constructing SQL Queries from a HTML form,
which are used to get results from a database.
These results are then emailed to the person who
requested them.

1 Introduction

There was a big database which had a lot of
information related to patents. This database
was divided into tables each of which contained
different parts of information (patent informa-
tion, inventor information, assignee information,
lawyer information, etc.). However, before creat-
ing this interface, the only way to access this in-
formation was by making SQL queries. This re-
quired login credentials to the MySQL database,
and SQL query forming expertise. To give a per-
son without these privileges access to this in-
formation, we needed a web page where users
could select what information they want from
this database.

The goal was to make a user friendly web inter-
face which allowed users to select what rows they
wanted from the tables in the database, spec-
ify any filters they wanted to specify for these
rows, enter their email address, and specify the
format in which they wanted the information
(CSV, TSV, or SQLITE3). To do this, we se-
lected to use the Django [4] framework because
it was easy to install and learn. And then, to

run the query itself, we used an external python
file that imported the Django settings and just
ran jobs if any were available (or sleep for some
specific amount of seconds if no jobs were avail-
able). Our final goal was to make an app that
would do this sort of forms to queries transfor-
mation on any database with minimal changes
to the files included in the app.

2 Structure of the Application

The application is available on github at
https://github.com/gtfierro/walkthedinosaur.
The application consists of three services: the
django app that parses user input and turns
it into a query, a python file that executes the
query, gets the result from the remote MySQL
database, writes it to a file and emails the user
a notification which contains a download link to
the file, and a fileserver that serves files to the
user.

All the models, templates and views are stored
in the batchsql folter. The python file that exe-
cutes the query is called run_jobs.py. The in-
formation to connect to the remote server and
other configurations are stored in config.ini.

3 Structure of Database

The database [1] is divided into many tables.
Out of these tables, the tables we can currently
get information from (and their columns) are:

1



Figure 1: Structure of app

1. patent: This table contains primary infor-
mation about the patent.

(a) title: The Title of the Patent

(b) id: The patent ID. This is a unique
number for each patent.

(c) date: The date on which this patent
was issued.

(d) country: The country where this
patent was issued.

2. rawinventor: This table contains informa-
tion about the patents inventor.

(a) name first: The first name of the in-
ventor.

(b) name last: The last name of the inven-
tor.

(c) nationality: The nationality of the in-
ventor.

(d) location id: Column to establish a re-
lationship between inventors and loca-
tions. This contains the id of the loca-
tion of the inventor.

(e) patent id: Column to establish a rela-
tionship between a patent and its in-
ventor. This contains the id of the
patent to which it refers to.

3. rawassignee: This table contains infor-
mation about the entity that assigned this
patent.

(a) name first: The first name of the as-
signee.

(b) name last: The last name of the as-
signee.

(c) nationality: The nationality of the as-
signee. organization: Name of the or-
ganization this assignee belongs to (if
any).

(d) location id: Column to establish a re-
lationship between inventors and loca-
tions. This contains the id of the loca-
tion of the assignee.

(e) patent id: Column to establish a rela-
tionship between a patent and its as-
signee. This contains the id of the
patent to which it refers to.

4. rawlawyer:

(a) name first: The first name of the in-
ventor.

(b) name last: The last name of the inven-
tor.

(c) organization: Name of the organiza-
tion this assignee belongs to (if any).

2



(d) country: Country where the lawyer
(organization) exists.

(e) patent id: Column to establish a re-
lationship between a patent and its
lawyer. This contains the id of the
patent to which it refers to.

5. rawlocation: This table stores information
for different locations.

(a) id: Unique number for each location.

(b) city: The name of the city.

(c) state: The name of the state.

(d) country: The name of the country.

6. claim: This table stores information about
the claims of every patent.

(a) patent id: Column to establish a re-
lationship between a patent and its
lawyer. This contains the id of the
patent to which the claim refers to.

(b) text: The text of this claim.

(c) dependent: ID of the claim this claim
is dependent on.

(d) sequence: ID of this claim.

7. uspatentcitation: This table stores infor-
mation on all the citations in a patent.

(a) patent id: Column to establish a re-
lationship between a patent and its
lawyer. This contains the id of the
patent to which it refers to.

(b) date: The date this citation was made.

(c) country: The country in which this ci-
tation was made.

(d) sequence: The ID of the citation.

4 Converting HTML form to
SQL Query

All of the conversion from HTML form to a SQL
query is done in batchsql/models.py. All of

the form variables are given to the TestQuery
class through the post variable that we get from
django. In post, all the values entered by the
user are stored as a dictionary in the form field-
name:value. All form elements are broadly cate-
gorized into three types:

1. Field Variables: These are the columns that
the user wants information from. For ex-
ample, Name of a Patent, or Name of the
Inventor of the Patent.

2. Filter Variables: These are the filters speci-
fied by the user. They are mostly textboxes
or select lists. If a user enters TX under the
Inventors location filter, then all the rows
(in the columns specified by field variables)
that have the inventors location as TX will
be returned.

3. Miscellaneous: The csrf token, the email ad-
dress, the file type that the user wants the
information in are considered as miscella-
neous fields as models.py does not use these
fields to make queries.

In models.py, we have a dictionary which
maps the form elements names to (ta-
ble,column) which they represent. For ex-
ample, the Patent Title represents the patent
table and the title column, and hence one
of the entries in this dictionary will be
pri-title:(patent, title)(where pri-title is
the name of the field for Patent Title). All fields
have a prefix of f to separate them from filters.
Converting the form elements is a 4 step process:

1. Get columns that the users want in their re-
sults and store it in a set. This is generated
from the Field Variables.

2. Get the names of tables to be searched and
store it in a set. This is generated from both
the Field Variables and Filter Variables.

3. Get the filter conditions and store it in a set.
This is generated from both the Field Vari-
ables (for cross-referencing between tables)
and Filter Variables.

3



4. Loop through the above sets and construct
a query of the structure

SELECT {table.columns} FROM {tables}
WHERE {filters};

Once this query is generated, it is stored
in a local databse that stores the queued
and completed job information, and then the
run_jobs.py file gets this query from this
database and runs the jobs that have not yet
been completed. It uses sqlalchemy [3] to
connect to and execute queries at the remote
MySQL [5] database.

5 Example Usage

5.1 Example 1

Lets say one needs to get the title of all the
patents that had been invented in Texas between
the period January 2005 and February 2005. To
do this, perform the following steps (screenshots
shown after the steps):

1. Select the checkbox besides Title of Patent
in primary information.

2. In the filters section, under Primary infor-
mation, set From as 2005-1-1 and To as
2005-2-1. Also, type TX in inventors state
textbox.

3. Finally, type in your email address on the
bottom of the page, choose the filetype, and
click on Submit.

This form is translated into the SQL query:

SELECT patent.title FROM patent, raw-
inventor, rawlocation WHERE (patent.date
BETWEEN 2005-1-1 AND 2005-2-1) AND
(patent.id = rawinventor.patent id) AND
((rawlocation.state LIKE %TX%) AND rawlo-
cation.id = rawinventor.rawlocation id);

5.2 Example 2

For the second example, lets say one needs to
get the names (first and last) of the lawyers that
filed for a patent in Michigan between January
2005 and February 2005. In addition, say they
want the inventors and assignees to also be in
Michigan [2].

1. Select First Name of Lawyer and Last Name
of Lawyer under Lawyer Information.

2. In the filters section, make sure to fill in
dates as before, and this time, fill in the
textbox for Inventors State with MI and
same for the Assignees State textbox.

3. Finally, just as before, fill in your email,
choose your filetype, and click on Submit.

This form is translated into the SQL query:
SELECT rawlawyer.name first,

rawlawyer.name last FROM patent, rawlo-
cation, rawinventor, rawassignee, rawlawyer
WHERE (patent.date BETWEEN 2005-
1-1 AND 2005-2-1) AND (patent.id
= rawinventor.patent id) AND (rawas-
signee.patent id = rawinventor.patent id) AND
(rawlawyer.patent id = rawinventor.patent id)
AND ((rawlocation.state LIKE %MI%) AND
rawlocation.id = rawinventor.rawlocation id)
AND ((rawlocation.state LIKE %MI%) AND
rawlocation.id = rawassignee.rawlocation id);

6 Acknowledgements

I would like to thank Professor Lee Fleming
for giving me the opportunity to work on this
project. I would also like to thank Gabe Fierro
for guiding me in making the application and
helping me fix many bugs and design issues.

4



Figure 2: Example 1: Step 1

5



Figure 3: Example 1: Step 2

6



Figure 4: Example 1: Step 3

Figure 5: Example 2: Step 1

7



Figure 6: Example 2: Step 2-1
8



Figure 7: Example 2: Step 2-2

9



References
[1] Gabe Fierro . Processing USPTO Patent Data , 2013.

[2] Kevin Johnson . Geocoding Patent Data. Tech. rep.,
Fung Institute ; UC Berkeley, 2013.

[3] Michael Bayer, SQLAlchemy . http://www.

sqlalchemy.org/, 2013.

[4] Django Software Foundation. https://www.

djangoproject.com/, 2013.

[5] Oracle Corporation. http://www.mysql.com/, 2013.

10


