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The statistical estimation problem

• Observed data: Realizations of random variables with a
probability distribution.

• Statistical model: Set of possible distributions for the
data-generating distribution, defined by actual knowledge
about the data. e.g. in an RCT, we know the probability of
each subject receiving treatment.

• Statistical target parameter: Function of the
data-generating distribution that we wish to learn from the
data.

• Estimator: An a priori-specified algorithm that takes the
observed data and returns an estimate of the target
parameter. Benchmarked by a dissimilarity-measure (e.g.,
MSE) w.r.t target parameter.
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Example

• Observed data: n i.i.d. copies of O = (W ,A,Y ) ∼ P0.
• Statistical model: Nonparametric model.
• Statistical target parameter:

Ψ(P) = EP{EP(Y | A = 1,W )− EP(Y | A = 0,W )}. Only
depends on P through Q̄(P) = EP(Y | A,W ) and QW (P):
So we can write Ψ(Q), where Q = (QW , Q̄).

• Estimator: E.g., plug-in estimator:
ψn = Ψ(Qn) = 1

n
∑n

i=1{Q̄n(1,Wi )− Q̄n(0,Wi )}.
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Targeted learning

• Define valid (and thus LARGE) statistical semi parametric
models and interesting target parameters

• Avoid reliance on human art and nonrealistic parametric
models

• Plug-in estimator based on targeted fit of the (relevant part
of) data-generating distribution to the parameter of interest

• Semiparametric efficient and robust
• Statistical inference
• Has been applied to: static or dynamic treatments, direct and
indirect effects, parameters of MSMs, variable importance
analysis in genomics, longitudinal/repeated measures data
with time-dependent confounding, censoring/missingness,
case-control studies, RCTs, dependent network data, etc.
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Targeted Learning Book
Springer Series in Statistics
van der laan & Rose
targetedlearningbook.com
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Two stage methodology

• Super learning (SL) van der Laan et al. (2007),Polley et al.
(2012),Polley and van der Laan (2012)

• Uses a library of candidate estimators (e.g. multiple parametric
models, machine learning algorithms like neural networks,
RandomForest, etc.)

• Builds data-adaptive weighted combination of estimators using
cross validation

• Targeted (maximum likelihood/minimum loss) estimation
(TMLE) van der Laan and Rubin (2006)

• Updates initial estimate, often a Super Learner, to remove bias
for the parameter of interest

• Update based on parametric submodel through initial estimate
with score equal to efficient score/efficient influence curve.

• Calculates final parameter from updated fit of the
data-generating distribution
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Super learning

• Generalization of stacking.
• No need to chose a priori a particular parametric model or
machine learning algorithm for a particular problem

• Allows one to combine many data-adaptive estimators into
one improved estimator.

• Grounded by oracle results for cross-validation as estimator
selection (Van Der Laan and Dudoit (2003),van der Vaart
et al. (2006)). Loss function needs to be bounded.

• Performs asymptotically as well as best (oracle) weighted
combination, or achieves parametric rate of convergence.
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Super learning: Simulation example

Figure: Relative Cross-Validated Mean Squared Error (compared to main
terms least squares regression)
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Super learning: Data example
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TMLE algorithm
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TMLE algorithm: Formal Template
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Simulations
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General Longitudinal Data Structure

We observe n i.i.d. copies of a longitudinal data structure

O = (L(0),A(0), . . . , L(K ),A(K ),Y = L(K + 1)),

where A(t) denotes a discrete valued intervention node, L(t) is an
intermediate covariate realized after A(t − 1) and before A(t),
t = 0, . . . ,K , and Y is a final outcome of interest.

For example, A(t) = (A1(t),A2(t)) could be a vector of two binary
indicators of censoring and treatment, respectively.
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Likelihood and Statistical Model

The probability distribution P0 of O can be factorized according to
the time-ordering as

P0(O) =
K+1∏
t=0

P0(L(t) | Pa(L(t)))
K∏

t=0
P0(A(t) | Pa(A(t)))

≡
K+1∏
t=0

Q0,L(t)(O)
K∏

t=0
g0,A(t)(O)

≡ Q0g0,

where Pa(L(t)) ≡ (L̄(t − 1), Ā(t − 1)) and
Pa(A(t)) ≡ (L̄(t), Ā(t − 1)) denote the parents of L(t) and A(t) in
the time-ordered sequence, respectively. The g0-factor represents
the intervention mechanism: e..g, treatment and right-censoring
mechanism.
Statistical Model: We make no assumptions on Q0, but could
make assumptions on g0. 18 / 48



Statistical Target Parameter: G-computation Formula for
Post-Intervention Distribution

• Let

Pd (l) =
K+1∏
t=0

Qd
L(t)(̄l(t)), (1)

where Qd
L(t)(̄l(t)) = QL(t)(l(t) | l̄(t − 1), Ā(t − 1) = d̄(t − 1)).

• Let Ld = (L(0), Ld (1), . . . ,Y d = Ld (K + 1)) denote the
random variable with probability distribution Pd .

• This is the so called G-computation formula for the
post-intervention distribution corresponding with the dynamic
intervention d .
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A Sequential Regression G-computation Formula (Bang,
Robins, 2005)

• By the iterative conditional expectation rule (tower rule), we
have

EPd Y d = E . . .E (E (Y d | L̄d (K )) | Ld (K − 1)) . . . | L(0)).

• In addition, the conditional expectation, given L̄d (K ) is
equivalent with conditioning on L̄(K ), Ā(K − 1) = d̄(K − 1).

In this manner, one can represent EPd Y d as an iterative
conditional expectation, first take conditional expectation, given
L̄d (K ) (equivalent with L̄(K ), Ā(K − 1)), then take the conditional
expectation, given L̄d (K − 1) (equivalent with
L̄(K − 1), Ā(K − 2)), and so on, until the conditional expectation
given L(0), and finally take the mean over L(0).
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Marginal structural working models

We can define a target parameter as projection of the true
dose-response curve (EPd Y d : d ∈ D) onto a working model
{d → mβ(d) : β}. For example, if Y (t) ∈ [0, 1], we can define

Ψ(P0)) = argmax β
E0
∑

t
∑

d∈D h(d , t,V )
{

E0(Y d (t)) logmβ(d , t)

+ (1− E0(Y d (t)) log(1−mβ(d , t))
}
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ltmle package (Petersen et al. (2013), van der Laan,
Gruber (2012), Schitzer et al. (2013))

R package (April 2013): ltmle
• Causal effect estimation with multiple intervention nodes

• Intervention-specific mean under longitudinal static and
dynamic interventions

• Static and dynamic marginal structural models
• General longitudinal data structures

• Repeated measures outcomes
• Right censoring

• Estimators
• IPTW
• Non-targeted MLE
• TMLE (two algorithms for MSM)

• Options include nuisance parameter estimation via glm
regression formulas or calling SuperLearner()
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Optimal dynamic treatment

Let D be the class of all dynamic treatments for which the rule for
assigning A(k) only uses (V̄ (k) ⊂ L̄(k), Ā(k − 1)), k = 0, . . . ,K .
Define the optimal rule

d0 = argmax
d∈D

EP0Yd .

This optimal rule is given by d0,k = I(Q̄d0,k+1
0,k > 0) in terms of the

iteratively defined blip functions (starting with k = K ):

Q̄d0,k+1
0,k = E0(Yā(k−1),A(k)=1,d0,k+1

− Yā(k−1),A(k)=0,d0,k+1
| Vā(k)),

where dk+1 = (dj : j = k + 1, . . . ,K ). These blip-functions are
modeled with parametric models in Murphy (2003), Robins (2003,
2004) to yield their structural nested mean models for optimal
dynamic treatments.

27 / 48



Sequential Super Learning of blip functions

For simplicity, consider case L(0),A(0), L(1),A(1),Y (i.e., K = 1).

• We need to construct a data adaptive estimator of
Q̄02(a(0), v(1)) = EP0(Ya(0)1 − Ya(0)0 | Va(0)(1) = v(1)) and,
given the resulting estimator dn,A(1) of d0,A(1), we
subsequently need to construct a data adaptive estimator of
Q̄01,d (v(0)) = EP0(Y1dA(1)

− Y0dA(1)
| V (0) = v(0)) for a given

dA(1) = dn,A(1).
• For that purpose we propose to use sequential loss-based
super-learning defined by the application of two subsequent
super-learners.
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Example of loss function: IPCW-loss functions

For the super-learner of Q̄20 we can use the following loss function:
L2,g0(Q̄2)(O) =∑

a(0)
I(A(0)=a(0)
g0,A(0)(O)

(
D(g0)(O)− Q̄2(A(0),V (1)

)2
,

where
D(g0)(O) = I(A2(1) = 1)

2A1(1)− 1
g0,A(1)(O)

Y .

Given, the fitted rule of d0,A(1), for the super-learner of Q̄d
10, we

can use the loss function
L1,d ,g0(Q̄d

1 )(O) =
I(A(1)=dA(1)(V (1))

g0,A(1)(O) (D(g0)(O)− Q̄d
1 (V (0)))2,

where
D(g0)(O) = I(A2(0) = 1)

2A1(0)− 1
g0,A(0)(O)

Y .
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Super-learning based on performance of candidate rule

• Given a collection of candidate estimators d̂α(Pn) of d0, we
can also select α with a maximizer of a cross-validated
estimator of the conditional risk α→ EBnEP0Yd̂α(P0

n,Bn ), where
Bn ∈ {0, 1}n is sample split-vector, P0

n,Bn
is empirical

distribution of training sample {i : Bn(i) = 0}. P1
n,Bn

denotes
the empirical distribution of validation sample.

• For example, we could use the cross-validated empirical mean
EBnP1

n,Bn
Lg0(d̂α(P0

n,Bn
) of the IPCW-loss

Lg0(d) =
I(Ā = d(V ))

g0(O)
Y ,

or the DR-IPCW loss Lg0,Q0 .
• Alternatively, we can estimate this conditional risk

EBnEP0Yd̂α(P0
n,Bn ) with a cross-validated-TMLE.
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Statistical Inference for mean outcome under optimal rule

• The pathwise derivative of this target parameter E0Yd0 equals
the pathwise derivative of the mean counterfactual outcome
E0Yd under a given dynamic treatment rule d set at the
optimal rule d0, treating the latter as known!

• Thus, we apply the targeted minimum loss-based estimator for
the mean outcome under a given rule, but set the given rule
equal to our data adaptive estimator of the optimal rule.

• This TMLE of E0Yd0 is asymptotically linear, allowing us to
construct confidence intervals for the mean outcome under
the optimal dynamic treatment or its contrast E0(Yd0 − Y0)
w.r.t. a standard treatment.

• In a SMART the statistical inference would only rely upon a
second order difference between the estimator of the optimal
dynamic treatment and the optimal dynamic treatment itself
to be asymptotically negligible.
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Statistical Inference for Mean outcome under fitted
optimal rule

• The same targeted minimum loss based estimator can be
viewed as an estimator of the data adaptive target parameter
E0Yd |d=dn

defined as the mean outcome under the estimate
of the optimal dynamic treatment.

• In particular, we develop a cross-validated TMLE that
provides asymptotic inference for EBnE0Yd̂(P0

n,Bn ) under
minimal conditions.
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Concluding remarks

• Thinking in terms of parametric models avoids natural results
and progress.

• (Different versions of) Super-Learning of Optimal dynamic
treatment based on sequentially randomized trials or
observational studies is an exciting future area.

• It can be combined with statistical inference for the mean
outcome.

• Statistical package development.
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Targeted Learning of Causal Effect on Network of Units
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Structural Equation Model for Interconnected Units

Wi = Li (0) = fWi (UWi )
Ai = Ai (0) = fA(CA

i ,UAi )
Yi = Li (1) = fY (CY

i ,UYi )
i = 1, . . . ,N,

where CA
i = cA

i (W ) ∈ IRd1 is determined by W = (W1, . . . ,WN),
and CY

i = cY
i (W ,A) ∈ IRd2 is determined by W ,A with

A = (A1, . . . ,AN). Important case is that Fi is set of ”friends” of
unit i , and

cA
i (W ) = (Wj : j ∈ Fi )

cY
i (A,W ) = ((Wi ,Ai ), (Wj ,Aj : j ∈ Fi )).

It is assumed that UWi are independent, and, conditional on W ,
(UAi ,UYi ) are independent (RA), and iid across i .
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Causal Quantity Defined by Stochastic Intervention

• Let g∗ be a conditional distribution of A, given W .
• Our goal is to estimate the mean of the counterfactual
outcome of Y c = 1/N

∑N
i=1 Yi under the stochastic

intervention g∗. Let Yg∗ = (Yg∗,i : i = 1, . . . ,N) be the
counterfactual indexed by a stochastic intervention g∗ on A,
and Y c

g∗ = 1/N
∑N

i=1 Yg∗,i .
• The causal quantity of interest is defined as

ΨF (PU,W ,A,Y ) = EY c
g∗ ,

which is a parameter of the distribution of (U,W ,A,Y ).
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Observed Data and Likelihood

We observe O = (O1, . . . ,ON), where Oi = (Wi ,Ai ,Yi ). Due to
the above structural assumptions, the probability distribution of O
is given by:

P(O) =
N∏

i=1
PWi (Wi )PA|CA(Ai | CA

i )PY |CY (Yi | CY
i ), (2)

where PA|cA(· | cA) is a common (in i) density for A for each cA,
and PY |CY (· | cY ) is a common density for Y for each cY .
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Identifiability: G-Computation Formula

Since, by assumption, A = (A1, . . . ,AN) is independent of
UY = (UYi : i = 1, . . . ,N), given W = (W1, . . . ,WN), the
post-intervention probability distribution Pg∗ of
(W ,Yg∗) = (Wi ,Yi ,g∗ : i = 1, . . . ,N) is identified by the following
G-computation formula applied to the probability distribution P of
O:

Pg∗(W ,A∗,Y ) =
N∏

i=1
PWi (Wi )PY |CY (Yi | CY ,∗

i )g∗i (A∗i | C
A,∗
i )

≡ Pg∗(W ,A∗,Y ),

where CY ,∗
i = cY

i (A∗,W ).
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Statistical Estimation Problem

• LetM be the statistical model for the data distribution P in
which PWi , i = 1, . . . ,N, and the common PA|CA , PY |CY are
unspecified.

• Let the statistical target parameter mapping Ψ :M→ IR be
defined as Ψ(P) = EPg∗Y g∗,c .

• Under the stated causal model and identifiability assumptions
under which P = PPU,W ,A,Y , we have

Ψ(P) = ΨF (PU,W ,A,Y ),

so that Ψ(P) can be interpreted as the desired causal quantity.
• Our goal is to construct an estimator of ψ0 = Ψ(P0) based on

O = (O1, . . . ,ON) ∼ P0 ∈M.
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Let QWi be the marginal distribution of Wi and let Q̄Y be the
common conditional mean of Yi , given CY

i . The target parameter
Ψ(P) only depends on P through QWi , i = 1, . . . ,N, and Q̄Y :

Ψ(P) = Ψ(Q) =
1
N

N∑
i=1

∫
a∗,w

Q̄Y (CY
i (a∗,w))g∗(a∗ | w)QW (w).
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TMLE

• Recall the target parameter is given by

ψ0 = E0Y c,g∗ = Ψ(Q̄Y ,0,QW ,0)

= 1
N
∑N

j=1
∫

a,w Q̄Y ,0(cY
j (a,w))g∗(a | w)QW ,0(w).

• Let Q̄N be an estimator of Q̄Y ,0(c) = E0(Yi | CY
i = c).

Suppose Yi ∈ {0, 1} or continuous in (0, 1). This estimator
Q̄N could be based on the log-likelihood loss function

−L(Q̄Y )(O) =
N∑

i=1
log Q̄Y (cY

i )Yi (1− Q̄Y (cY
i ))1−Yi .

• Let Q̄W ,N be a nonparametric maximum likelihood estimator
of QW , thus respecting the model for the joint distribution of
W1, . . . ,WN .

• A plug-in estimator could now be defined as Ψ(Q̄N ,QW ,N).
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• Let gN be an estimator of g0. Given the model assumption
g(A |W ) =

∏
i ḡ(Ai | cA

i (W )) for a common conditional
density ḡ , this estimator can be based on the log-likelihood
loss:

L(g)(O) = −
N∑

i=1
log ḡ(Ai | cA

i ).

• Given gN , QW ,N , Q̄N , let Q̄N(ε) be a target-parameter
specific submodel through Q̄N defined by

LogitQ̄N(ε) = LogitQ̄N + ε
h̄(g∗,QW ,N)

h̄(gN ,QW ,N)
.
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• Let
εN = argmin

ε
L(Q̄N(ε))(O)

be the maximum likelihood estimator, which simply involves
running univariate logistic regression on a pooled data set
with binary outcomes Yi and covariate h̄(g∗,QW ,N )

h̄(gN ,QW ,N )
(cY

i ), using
as off-set LogitQ̄N .

• Here h̄ =
∑

i hi , hi (c) = P(CY
i (A,W ) = c), and h̄∗ =

∑
i h∗i

with h∗i = hi (g∗,QW ).
• This defines now an update Q̄∗N = Q̄N(εN).
• The TMLE of ψ0 is defined as the corresponding plug-in
estimator

ψ∗N = Ψ(Q̄∗N ,QW ,N).
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Statistical Inference

This TMLE has been shown to be a double robust asymptotically
normally distributed estimator, under the assumption that the
number of friends does not grow to fast to infinity with N (?).
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Comparing Estimators in SEARCH trial simulation
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