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Abstract

This paper quantifies the relationship between market size and innovation in the pharmaceutical
industry using improved, and newer, methods and data. We estimate the elasticity of innovation,
as measured by the number of new chemical entities appearing on the market for a given disease
class, to the expected market size as measured by the spending of sufferers of diseases in that class
(and others acting on their behalf such as insurers and governments) on their treatment during the
patent lifetime. We find positive significant elasticities with a point estimate under our preferred
specification of 25.2%. This suggests that, on average, at the mean market size an additional
$1.8 billion is required in additional patent life revenue to support the invention of one additional
new chemical entity. An elasticity substantially and significantly below 100% is also a plausible
implication of the hypothesis that innovation in pharmaceuticals is becoming more diffi cult and
expensive over time, as costs of regulatory approval rise and as the industry runs out of "low
hanging fruit".
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1 Introduction

This paper quantifies the relationship between financial returns and innovation in the pharmaceutical

industry. More precisely we shall estimate the elasticity of innovation (as measured by the number of

new chemical entities appearing on the market for a given disease class) to the expected market size as

measured by the spending on treatment by sufferers of diseases in that class (and others acting on their

behalf such as insurers and governments). While this is an important question that has been addressed

in earlier literature, we believe our paper improves on that literature in several important ways. First,

we have data on the names and the global revenues of all pharmaceutical products over an eleven year

period, as collected by a pharmaceutical data provider IMS. These detailed data allow us to calculate

an excellent measure of innovation, the number of new molecular entities released during our time

period. Literature prior to the availability of this dataset proxies for innovation with intermediate

measures such as clinical trials or available regimens, or counts only drug products released in the

United States. Global revenue data have never, to our knowledge, been used in the literature to

measure the response of innovation to market size but yet are likely one of the most useful available

measures of market size. Secondly, we employ new methods to estimate the relationship between

innovation and market size. Our empirical technique is designed to obtain unbiased estimates from

censored count data. In addition, it accommodates our instrumental variables strategy, also new in

the literature. While a large expected market size may stimulate new pharmaceutical innovation,

it may also be the case that new pharmaceutical innovation creates sales and therefore market size.

New innovation also intensifies competition between products and therefore reduces prices and the

overall proportion of consumer willingness to pay that producers can expect to appropriate. Because

of the likely existence of reverse causality, we instrument for market size in our estimation procedure.

We find, not surprisingly, that market size has a positive impact on global release of new molecular

entities. However, our elasticity estimate is very substantially below unity, which implies (as we explain

in the theoretical section) that if our model of innovation is accurate the fixed costs of innovation are

rising sharply with market size. We follow up this estimate with regressions specific to a therapeutic

class. Although there is significant variation between therapeutic classes, and the average elasticity
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across classes is somewhat higher than that estimated by pooling classes, this elasticity still implies

significantly rising innovation costs with market size.

Expected market size is influenced by broadly three types of factors. First there are factors such as

demographic and socio-economic change, which affect the numbers of people who are likely to suffer

from a particular medical condition and the resources they are likely to have available to spend on

alleviating their condition. A motivating example concerning research on gout from the New York

Times illustrates the incentives for R&D. "Often called the “disease of kings”because of its association

with the rich foods and copious alcohol once available only to aristocrats, gout is staging a middle-class

comeback as American society grows older and heavier. ...Companies are now racing to improve upon

decades-old generic drugs that do not work well for everyone. Already this year the Food and Drug

Administration has approved the first new gout drug in more than 40 years...".1 Many other examples

evidently spring to mind of research motivated primarily by changing demographic and socio-economic

factors, such as research into cardiovascular disease and Alzheimer’s disease. We shall refer to such

factors in the paper as "potential demand".

Secondly, there are factors particular to the pharmaceutical and health-care industries, such as

the degree of competition among firms and the strategies that firms use to innovate, cut costs, and

win customers, that affect the profitability of innovation. For example, intensified competition from

generics for branded products occurs not only as a response to patent expiry but also in response to

the purchasing environments. Cost-control pressures from managed care create incentives for generic

use and reduce the expected market size of an innovation. The response of firms to a given potential

demand may also depend on such considerations as their degree of symmetry in competence: the

competition between two firms of similar size and employing similar talent pools may be quite different

1 "Disease of Rich Extends Its Pain to Middle class", New York Times, June 12, 2009 . The story continued:
"...a product called Uloric from Takeda Pharmaceutical. Another new drug, Krystexxa, made by Savient Pharmaceu-

ticals of East Brunswick, N.J., will be reviewed for possible approval by an F.D.A. advisory committee on Tuesday. And
several other companies are testing drugs in clinical trials. “It’s kind of like the forgotten disease,”said Barry D. Quart,
chief executive of one of those companies, Ardea Biosciences of San Diego. Ardea discovered accidentally that an AIDS
drug it was developing might work against gout. Now the company has shifted its focus to gout, envisioning annual sales
of $1 billion if its drug is successful. That would mean a huge increase in spending on gout medicines, which had sales of
only $53.4 million last year, according to IMS Health, a health care information company. Uloric, the drug from Takeda,
sells a daily pill for at least $4.50 compared with 10 to 50 cents for the most commonly used generic, allopurinol. It is
estimated that two million to six million Americans have gout... Various studies suggest that the number of cases in this
country has as much as doubled in the last three decades".
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from competition between a leader and a follower firm.

Thirdly, there are public policies, including policies towards intellectual property protection, drug

safety and testing, pricing and reimbursement, and public funding of research. As a matter of compar-

ison, in 2004, research spending by NIH reached $28.5 billion while the members of the Pharmaceutical

Research and Manufacturers of America report R&D spending of about $40 billion - see CBO 2006.

Policy innovations such as the introduction of Medicare in the 1960s have had a large impact on ex-

pected market size, and various researchers have noted the consequences for research and innovation

in drugs for the elderly that were the probable consequence (Acemoglu et al., 2006).

In principle it might be thought that, from a policy point of view, the only really interesting factors

affecting expected market size are those in the third category, and that therefore any study such as

ours should focus on the elasticity of innovation with respect to these factors only. Such estimates

could be used, for instance, to calculate the social cost of a particular drug pricing regime or of a

proposed change in the length or breadth of patent protection, or the social returns to additional

spending by the NIH. However, this argument is flawed, even if one ignores the possibility that the

influence of the other types of factor may be of independent interest (such as for predicting future

trends in research and innovation). Estimating the elasticity of innovation with respect to past changes

in policy would be possible only if we could observe genuine policy experiments, conducted without

reference to the many factors, unobserved to the econometrician, that might influence the potential

rate of innovation. But most policy changes are not like that, and arguably most of them should not

be. They are typically endogenous to the rate of innovation itself, either because public policy may

feel it does not need to intervene to favor areas where innovation is already coming along nicely, or

because public policy likes to bask in the glow of supporting visibly successful areas, or because once

key drugs have been developed it is tempting to lower their prices to users, or for any number of

other reasons. This makes the observed elasticity of innovation with respect to past policy changes

unreliable as a guide to the elasticity of innovation with respect to future policy changes.

Factors of the first type, by contrast, are rarely under the influence of either government or industry

participants, at least not in the short- to medium-term. We exploit these exogenous changes in
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potential demand to estimate elasticities, freed from the confusing interference on expected market

size of the two other types of factor. We examine the response of global new drug launches to global

expected market size measured in revenues. Of course, a simple regression of new drugs on revenues will

pick up both causal directions mentioned above: revenues attract innovation and also drug innovations

generate revenue. Our identification strategy is as follows. If the cardiovascular market is expected to

grow due to an aging population, firms will want to serve that demand. Therefore, there will be an

increase in cardiovascular R&D and - on average - we will see the release of new cardiovascular products

on the market at the time of the demand increase. Different therapeutic markets whose potential sizes

change differently over time due to demographic and income differences drive commensurate changes

in innovative activity. We can measure the elasticity of new products to expected market size using

this variation.

Thus our instruments are measures of population and disease prevalence in our sample of countries

over time. Our strategy is sensible because demographics are strongly correlated with revenue. More-

over, the invention of a new drug does not change the contemporaneous propensity for populations of a

particular country to suffer from cardiovascular disease, for example. One might think that discovery

of an effective innovative product would increase life expectancy and therefore alter the demographic

trends we measure2. However, the fact that we use contemporaneous demographics over a 4 year pe-

riod of time contemporaneous to product launch makes this unlikely and protects us from this reverse

causality. It is not likely that a new product could affect mortality this quickly. Thus we expect

demographics to be uncorrelated with the error term in our regression of new drug counts. For our

assumption to be violated, it must be the case that a novel therapy generates additional measurable

diagnoses in the specific area. While this makes sense for narrowly targeted treatments and diagnoses,

it seems much less likely to be operating at the level of fairly coarse disease areas tracked by WHO,

such as “cardiovascular disease”. By utilizing this instrumental variables approach, we can isolate the

impact of revenue changes driven by demographics and determine their impact on innovation.

We use international data to reflect the fact that all markets, including those outside the US,

constitute an important incentive for innovation. There is an older literature relating market size in
2Lichtenberg and Duflos (2008) provides evidence of this channel.
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a country to the R&D undertaken in that country. Because there are unobserved factors such as the

level of education in a country that might affect both R&D and health spending, we do not use this

source of variation. The variation we exploit is across therapeutic classes and over time, rather than

across geography. Additionally, biopharmaceutical research is carried out all across the globe by both

local and international firms. In our view, therefore, the appropriate level of analysis for a study of

the determinants of innovation —both in terms of which products to include and which markets to

count - is global.

The relatively recent literature on the topic of the elasticity of pharmaceutical innovation to ex-

pected market size contains two broad approaches. The older of the two uses accounting data to

estimate the determinants of R&D (see Grabowski and Vernon (2000)). In theory, under perfect cap-

ital markets R&D would be chosen only in response to expected future profitability of the project.

However, if capital markets are imperfect and external funds are more expensive than internal cash

flow, current revenue (market size) will have a positive impact on the amount of research funded by the

firm. Of course, if current market size is a proxy for future market size, then current research may be

responding to future sales opportunities also, but these two effects cannot be disentangled. Giacotto

et al. (2005) regress R&D-to-sales ratio on the pharmaceutical price index from the previous year and

other variables. Again, this is a model of innovation responding not to expected future market size,

but to recent prices. They find a 1% increase in price leads to a 0.58% increase in R&D spending.

Finkelstein (2004) finds that a 1% increase in revenue for vaccines leads to a (much lower) 0.05% to

0.06% increase in R&D spending on vaccines. A second stream of the literature uses alternate mea-

sures both for outcomes and market size. Innovation is measured as clinical trials (Blume-Kohout and

Sood, 2009; Yin, 2008, 2009), journal articles or disease regimens (Lichtenberg, 2006), while poten-

tial market size is (negative) disability-adjusted life years (DALY) or mortality (Civan and Maloney,

2006,2009, Lichtenberg, 2005). Lichtenberg (2005) finds results of similar magnitude: a 1% increase

in the number of people with cancer leads to a .58% increase in chemotherapy regimens. Civan and

Maloney (2006, 2009) find that a 1% increase in expected US entry price leads to .5% increase in

the number of drugs in the drug development pipeline. Lichtenberg (2005) finds that a 1% increase
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in DALY leads to a 1.3% increase in global drug launches. Acemoglu and Linn (2004) use variation

from 1970-2000 in the expenditure share of different US age cohorts for different therapeutic classes.

They combine this with data on all US FDA-approved new products and find that a 1% increase in

contemporaneous expenditure shares leads to a 4% increase in the number of new drugs released on

the market. This is a markedly higher elasticity than found in the previous literature.

While we will estimate the impact of financial incentives on the launch of new products, we are

cautious about drawing conclusions about the welfare benefits of those new products. There are

various reasons why this is not straightforward. One is that there may be diminishing marginal health

benefits from innovation: the first radical innovation in a therapeutic class may produce much greater

overall benefits than a drug that is just suffi ciently different from it to be granted a patent (though the

opposite could be true if the second drug avoids debilitating side-effects associated with the first). A

second reason is that it is particularly diffi cult in this line of research to calculate the welfare of a new

innovation in the absence of measures of consumers’valuation or willingness to pay. Most patients

are insured and therefore do not face a marginal price when buying biopharmaceuticals. The buyer

in most cases is either the nation in the case of national health systems, or the large PBMs, in the

case of private healthcare (USA), or some national systems like Germany. This buyer, while not the

patient, is the one that controls the formulary and pays at the margin, and so, from the point of view

of the researcher, has revealed a valuation for the treatment. However, some of these buyers may have

monopsony power and face political constraints, so using negotiated prices may not closely reflect

consumer welfare. An alternative approach to calculating welfare is to simply measure life years saved

by the new innovations and multiply by QALY, though comparable data for many of these products

is sparse. Our elasticities should therefore be interpreted only in terms of new product numbers and

great care should be exercised before any welfare conclusions are explicitly or implicitly drawn from

them.

We begin in section 2 by describing a simple model with testable implications we are investigating.

Section 3 describes our data. Section 4 gives our detailed results. Section 5 concludes.
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2 Theoretical Framework and Testable Implications

We are interested in the effect of expected market size on innovation. The model will consider that a

market represents a set of products in a given therapeutic class (though in the empirics we shall test

the robustness of our estimates to variations in the breadth of definition of such classes).

Consider the question of how firms expect the share of the potential revenues in a given market to

vary according to their R&D investments. This problem has two parts: how much their investments

will affect either the probability of discovering new drugs or the date at which they are discovered (or

both), and how the discovery of new drugs will affect their revenues given the expected presence of

other drugs on the market. Several simple models can be considered to study this relationship, and

predictions differ according to the assumed exogeneity of the structure of the industry, to the number

of firms, to the cost structure of R&D, and to the existence of R&D spillovers.

One approach which has been used in the previous literature is that drugs within a given therapeutic

category are only vertically differentiated; at any one moment the best drug, and only the best, will

capture the entire market. However, the top drug may not remain the best for long, and ongoing

research may at any moment produce a better drug which will in turn capture the entire market,

reducing the revenues of the previous best drug immediately to zero. The effort of pharmaceutical

research will therefore consist in trying to produce the drugs that are better than existing drugs and

hold that position for long enough to sustain their development costs before the next improved drug

in the class arrives.

We want to include horizontal differentiation in our model for several reasons. First, as a practical

matter, it is clear that many different treatments within the same therapeutic class have positive

revenue in the same time period. This, along with the findings in the clinical literature, indicates

that there is substantial horizontal differentiation in pharmaceutical markets. We want our model

to reflect this feature of the industry. Secondly, we are interested in developing a model that will

demonstrate a link between market size and the number of products. A model that allows the firm

to choose its level of R&D will yield results that depend on the trade-off between horizontal and

vertical product differentiation, issues that are not well explored in a model in which the highest
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quality product captures the entire market. For instance, Sutton (1991) shows that increasing market

size may not alter concentration in the industry if increased quality successfully attracts consumers

away from horizontally differentiated alternative products. In these circumstances a larger market

size will lead the firm to invest in vertical differentiation which naturally results in higher quality

products, but not in the entry of new firms. The reason is that margins must support the fixed costs

desired by consumers; if they want high quality, then both market share and margins must contribute

to covering those fixed costs, which means concentration must also be high. Increasing the degree of

horizontal differentiation weakens the Sutton result because of the built-in incentive for a firm to serve a

differentiated niche even with lower quality. Berry and Waldfogel (2010) illustrate this trade-off in their

work comparing restaurants to newspapers. Because restaurants are more horizontally differentiated

than newspapers and costs are mostly variable (unlike in newspapers), increasing market size does call

forth new firms and reduce concentration. By contrast, newspaper quality is improved using fixed costs

and newspapers compete on vertical quality measures, so increased market size does not create new

firms but rather raises the quality of incumbents. In their paper, the type of differentiation and the

cost structure have the same response to increased market size and work together to create maximal

difference in outcomes between the two industries. Our setting, pharmaceuticals, has significant

horizontal differentiation but also significant fixed costs, thus not fitting neatly into the Berry and

Waldfogel (2010) framework. We present below a model that allows for both horizontal and vertical

product differentiation, where firms can invest in quality by increasing fixed cost. We show that the

number of firms increases in market size when fixed costs are exogenous. To address the Sutton point,

we repeat the analysis for endogenous fixed costs and find the conditions under which we achieve the

same result.

Lastly, our final point is that therapeutic classes with horizontal differentiation are much easier to

operationalize empirically, a point we will return to below.

2.1 A Simple Model of R&D with Horizontal Differentiation

The model is a version of the well-known circle model due to Salop (1979), extended to incorporate

vertical differentiation in the manner of Armstrong and Weeds (2005). The Salop circle model is a
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nice choice for our problem because a natural number of firms fit round the circle in response to

consumers’willingness to pay and fixed costs. In this framework, when a firm considers whether it

should invest or not, it forms its expectations about revenues of the product over its lifetime, taking

into account the productivity of its own research programs and those of its rivals. We assume that

firms have rational expectations of the number of rivals, shares and prices.

Consider a circle of unit size, with a mass m of consumers uniformly distributed around the circle.

We shall call this parameter m the "potential demand", and note that it is not the same as actual

market size (or revenue) since the latter will depend on other conditions including prices.

Around this circle N firms are located at equal intervals. Firm i is located at point i/N , and

incurs a fixed cost of investment to produce a drug of quality vi which it sells at price pi; the number

of firms N will be determined by the requirement that the marginal firm makes zero profits (we shall

ignore integer problems).

A consumer purchases at most one unit of the drug, and has an outside option yielding utility

normalized to zero, so will purchase uniquely if doing so yields weakly positive utility. To simplify the

algebra we assume marginal costs of production are zero, though nothing in the qualitative results

turns on this assumption.

Consider what happens if there is market coverage —every consumer buys from at least one firm.

A consumer located at point c between firm i and firm i + 1 and who is indifferent between the two

will derive utility Uc where

Uc = vi − pi − t
(
c− i

N

)
= vi+1 − pi+1 − t

(
i+ 1

N
− c
)

from which we can define c, the location of the indifferent consumer under market coverage, as

c =
i

N
+

1

2N
+
vi − vi+1 − (pi − pi+1)

2t

where t is the (linear) “transport cost”, an indicator of the extent of horizontal product differentiation.

In a symmetric equilibrium in which all firms’prices and qualities are identical, this means that the

utility of the marginal consumer becomes

Uc = vi − pi −
t

2N
(1)
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Now, consider what happens if market coverage does not obtain. Then the indifferent consumer is

defined by

vi − pi − t
(
c′ − i

N

)
= 0

where c′ is the marginal consumer in the absence of market coverage. This implies that

c′ =
i

N
+

(vi − pi)
t

In practice we shall see that it is always more interesting to look at the case of market coverage,

since for a given potential market size m there will either be no entry or else firms will enter until the

available space on the circle is entirely occupied.

Now consider the objective function Πi of firm i. We look at two cases. First, there is the case of

exogenous quality, then of endogenous quality with quadratic costs of investment in quality.

2.1.1 Exogenous quality

Let’s assume that the quality of products is fixed exogenously and consider first that the market

coverage is complete. Then, given the expressions for the indifferent consumers, we can derive the

demand for each firm i and obtain the following objective function for the profits of firm i:

Πi = mpi

(
1

N
+

2vi − vi−1 − vi+1 −
(
2pi − pi−1−pi+1

)
2t

)
−K

Taking first order conditions with respect to prices while qualities are fixed yields:

∂Πi

∂pi
= m

(
1

N
+

2vi − (vi−1 + vi+1) +
(
pi−1+pi+1

)
2t

− 2pi
t

)
= 0

pi =
2t

N
+
(
pi−1+pi+1

)
+ 2vi − (vi−1 + vi+1)

In a symmetric equilibrium where qualities and prices are identical among firms, this implies that

pi =
t

2N
(2)

We can now use the zero-profit condition to solve for the equilibrium value of N (ignoring integer

problems). Substituting for equilibrium prices in the profit function yields

Πi =
mt

2N2
−K
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which when profits are zero implies

N =

√
mt

2K
(3)

Then, industry profits are zero and industry revenue is NK.

This yields a monotonic, strictly concave, relationship between potential demandm and the number

of firms N (hence of pharmaceutical products in the market), with N proportional to the square root

of m. From this we can derive

∂N

∂m
=

1

2

√
t

2mK
=

N

2m
(4)

which implies that the elasticity of N with respect to m is 0.5.

Note that we would obtain a similar qualitative finding with a quadratic transportation cost

function t(x) = tx2, as we would obtain N =
(
mt
2K

) 1
3 with a corresponding elasticity of 1

3 .

To verify the conditions under which this is consistent with market coverage, note that substituting

(2) into (1) implies that the indifferent consumer c has utility level

Uc = vi −
t

N

which for market coverage with exogenous quality implies, by substitution of (3), that

vi ≥
√

2tK

m

So we can conclude that, if quality is exogenous and above some threshold (
√

2tK
m ) that is increasing

in the extent of product differentiation (t) and in fixed entry costs (K), and decreasing in potential

demand (m), then the number of drugs in the market increases as the square root of potential demand.

However, it’s important to note that potential demand as we have defined it is not the same as

revenue, or market size. Total revenue NK is proportional to the number of firms, and thus the

elasticity of the number of firms with respect to total revenue is one. The reason why the elasticity

with respect to potential demand is lower than that with respect to total revenue is simply that revenue

does not increase proportionately to potential demand. Greater potential demand attracts more firms

and the increased competition lowers prices, thereby depressing revenue.
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In our empirical estimation we have no direct way to measure m. What we can measure is revenue.

We therefore expect there to be a unit elasticity of the number of firms with respect to revenue, unless

fixed costs of entry are not constant in the number of firms. If fixed costs of entry decrease in the

number of firms, say because of industry level scale economies, this will lead to an elasticity greater

than one. If fixed costs increase in the number of firms, this will lead to an elasticity less than one.

Conversely, we can use the estimated elasticity to infer whether fixed costs are increasing or decreasing

in the number of firms.

To conclude the analysis of the case with exogenous quality, we note that if the market were not

fully covered, prices would be given by the expression

pi =
vi
2

Then, the profit function becomes

Πi =
mvi

2

4
= K

which implies that fixed costs of entry are either too high so that no entry occurs, or low enough so that

entry occurs until it exhausts all available opportunities. For constant fixed cost, this suggests that

market coverage is the only interesting case to study. For fixed costs that vary by potential demand,

entry will be determined entirely by the shape of the cost function: any increase in m will simply raise

the profit threshold for entry, and all firms with fixed costs below the new higher threshold will enter.

2.1.2 Endogenous quality

In studying endogenous quality, we therefore look only at the case of full market coverage. Then, the

profit function can be written as follows:

Πi = mpi

(
1

N
+

2vi − vi−1 − vi+1 −
(
2pi − pi−1−pi+1

)
2t

)
−
(
K +

γ(vi − v)2

2

)

where K + γ(vi−v)2

2 is the cost of innovating with an innovation of quality level vi.

This differs from the profit function when quality is exogenous only in that the fixed cost contains

an element that is quadratic in the cost of increasing quality above a certain base level v.
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Assume that firms first choose product quality as part of their R&D decisions, then choose prices

once qualities are fixed. When choosing their R&D decisions they take the R&D decisions of other

firms as fixed and therefore also their entry decisions, so N is taken as given by firms choosing quality.

In solving for prices we can no longer presume equilibrium is symmetric. We assume nevertheless

that equilibrium is symmetric among firms other than firm i. Writing pj = pi+1 = pi−1 and analogously

for qualities, taking first order conditions with respect to pi and substituting in the analogous first

order conditions for pj yields

pi =
t

N
+

2 (vi − vj)
3

Substituting for prices in the objective function yields

Πi = m

(
t

N
+

(vi − vj)
3

)(
1

N
+
vi − vj

3t

)
−
(
K +

γ(vi − v)2

2

)

and taking first order conditions with respect to vi yields

m

N
+

4m (vi − vj)
9t

+ γv − γvi = 0

which, since equilibrium is symmetric, implies that

vi = v +
m

γN

This incidentally implies that the condition for market coverage can be written as

v +
m

γN
− t

N
− t

2N
≥ 0

which implies a threshold condition for v, namely that v ≥ 3tγ−2m
2γN .

We can now use the zero-profit condition to solve for the equilibrium value of N , denoted N∗.

Substituting for equilibrium qualities and prices in the profit function yields

Πi =
mt

N2
−
(
K +

m2

2γN2

)
which when profits are zero implies

N∗ =

√
mt

K

(
1− m

2tγ

)
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A real solution for N∗ requires that γ ≥ m
2t , which will hold so long as the cost of improving the

product is suffi ciently great.

Then, we also have the equilibrium quality of products which is

vi = v +
1

γ

√
mK

t− m
2γ

which is increasing in K, decreasing in γ, t.

We can then differentiate N∗ with respect to m to yield:

∂N

∂m
=

t− m
γ

2

√
mtK

(
1− m

2tγ

)
which is strictly positive so long as γ > m/2t.

The general conclusion about the relationship between potential demand and innovation derived

in the model with exogenous quality therefore carries over to the model with endogenous quality, so

long as the cost of improving quality is suffi ciently high.

However, with endogenous quality, we no longer find a unit elasticity of the number of firms (or

drugs) N∗ with respect to total revenue. In this case, total market revenue R∗ is endogenous and

given as a function of endogenous N∗ by

R∗ (N∗,m) =

(
K +

m2

2γN∗2

)
N∗ = KN∗ +

m2

2γN∗

which is a U shaped function of N∗ with a minimum at m√
2γK

. It is useful to note that as γ → ∞ it

converges to the expression for revenue under exogenous fixed costs.

However, since for a real solution for N it is necessary that γ ≥ m
2t , R

∗ (N∗,m) is increasing in N

at the optimal N∗ because

∂

∂N
R∗ (N∗,m) = K − m2

2γN∗2
= K

(
1− 1

2γ t
m − 1

)
> 0

This means that the relationship between N∗ and R∗ is increasing for a given m.

Now, as R∗ (N∗ (m) ,m) is increasing because

dR∗ (N∗ (m) ,m)

dm
=
∂R∗ (N∗,m)

∂N

∂N∗

∂m
+
∂R∗ (N∗,m)

∂m
> 0
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since

∂N∗

∂m
=

t− m
γ

2

√
mtK

(
1− m

2tγ

) > 0

and

∂R∗ (N∗,m)

∂m
=

m

γN∗
> 0

we can define m(R∗) as the inverse of R∗ (N∗ (m) ,m). The function m(R∗) is increasing in R∗ and

we thus have that∂N
∗

∂R∗ = ∂N∗

∂m
∂m
∂R∗ > 0.

It follows therefore that the number of equilibrium firms will also be an increasing function of total

market revenue.

2.2 Empirical Implications

For the empirical implementation of our model we make the simplifying assumption that each decision

to undertake R&D on a particular drug is independent of the other drugs in a firm’s portfolio (in

effect, each drug is treated as an independent firm). This is clearly not literally true, but introducing

into the model effects of multiple drug portfolios would greatly complicate it (by making equilibria

asymmetric, for example, as well as by making expected revenues for each drug dependent on the

success probabilities of other drugs in the firm’s portfolio) without conveying additional insight. We

see no reason to think that the fundamental intuition that drugs launched will be an increasing function

of expected market size should be undermined by portfolio effects of this kind. The important empirical

question is how large is the elasticity in question, and we can estimate this without needing to worry

about portfolio effects.

In our data, it is not typically the case that drugs take 100% market share serially upon entry.

Rather, drugs are somewhat differentiated in their side effects and effi cacy for different groups, and

each can make positive sales over time with others in the same class. When a firm is considering

investing in a horizontally-differentiated innovation, we assume it is aware of these empirical patterns

and has rational expectations about the market size of the therapeutic class and revenues a typical

drug in that class might earn over its lifetime. A virtue of our approach is that it does not require

us to examine the laws and regulations of the nations in our dataset to determine the lifecycle and
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profitability of a new innovation in each country. Rather, we use the empirical measurement of brand

revenue over time to tell us the effective patent length and market size.

This empirical strategy allows us to abstract from the exact nature of competition among brands

and how many entrants enter a market on average. Likewise, the state of generic competition when the

patent does end is important in determining the effective period of brand exclusivity because differing

regulations result in the brand keeping a substantial share of the market after generic entry in some

countries and not in others. Additionally, in some countries (such as the USA) the entry of the generic

does not drive down brand prices, whereas in others it may. Any other aspect of the IP regime that

affects the brand’s ability to earn profits, such as litigation by generics to end the patent term early,

compulsory licensing, etc. will appear in the data as part of the revenue lost by the brand. Alternative

IP provisions such as data exclusivity will likewise lengthen the effective period of brand exclusivity

by keeping the cost of generic entry high (the entrant has to perform all the clinical trials again). In

summary, the revenues of the brand over time will tell us what the effective market size is. We use

revenue therefore as a summary statistic for differences in IP protections, entry costs, regulations,

population, and wealth across countries. We operationalize this as the present discounted value of

sales of the average drug in that category, invented in that time period, over its lifetime (20 years).

Observed pharmaceutical revenues are an outcome of the equilibrium relationship resulting from

competition on the basis of innovation among firms in the biopharma industry. We consider that

firms take investment in research and development decisions based on rational expectations of the

profitability of such innovations. Given the usual time lag between R&D and innovations, we expect

firms to anticipate market size and rationally invest years in advance. For example, a firm releasing

a drug at time t is supposed to have begun the research process at t − 15 if it expects that it will

take 15 years to get approval for the new drug on a given market, taking into account the different

phases of the innovation process from fundamental research through the final phase clinical trials.

Thus assuming rational expectations by firms, the realization of an innovation should happen at the

time it has been anticipated and be driven by the revenue finally realized by such innovation.

To summarize, we measure market size as the lifetime revenue accruing to the average product
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that is launched during a particular time window. Our approach has the advantage of taking into

account horizontal competitors in the innovation process that are innovating around the same time.

Our measure of innovation is a count of new chemical entities (NCE) by therapeutic category

launched anywhere in the 14 countries from which we have revenue data. While lumpy because of

their small numbers, we consider these products to be uncontroversially innovative. Drug approval

agencies such as the FDA in the US will approve new varieties and forms of existing medications

(e.g. extended release, injectable versus oral) and generic drugs; these do not fall into our definition

of innovative. We feel that measuring products that have actually been marketed - and therefore

survived all the steps in the innovation process - will yield insights that might be missed by analyzing

clinical trials at different stages, or some other proxy for innovation.

3 Data description

Our data set from IMS (Intercontinental Marketing Services) Health includes all product sales in 14

countries (Australia, Brazil, Canada, China, France, Germany, Italy, Japan, Mexico, Korea, Spain,

Turkey, United Kingdom, USA) between 1997 and 2007 (except for China, where 1997 and 1998

are missing). The data report sales by value and unit volume for all pharmaceutical and biologic

products. All values are deflated into 2007 US$ using the US consumer price index. The database

reflects sales for all compounds in all 14 countries through retail pharmacies, hospitals and HMOs, and

includes characteristics of drugs like their four-digit Anatomical Therapeutic Classification (ATC4)

(607 different classes are reported), the main active ingredient of the drug (6216 different active

ingredients are reported), the name of the firm producing the drug, whether it has been licensed, the

patent start date, and the format of the drug (471 different formats are reported). Products in the

same ATC4 by definition have the same indication and mechanism of action. Some other available

and interesting drug characteristics are its brand type - licensed brand, original brand, other brand, or

unbranded - and (when applicable) its patent expiry date - ranging from 1966 to 2030 in the available

data, and which may differ from one country to another. We consider only ethical drugs and not

OTC drugs. Quantities are given in standard units, one standard unit corresponding to the smallest
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common dose of a product form, as defined by IMS Health.

Overall, the initial dataset has 6,163,465 observations (one per drug, country, year) but only

2,972,419 have strictly positive revenues and quantities (many observations correspond to years where

the drug was not yet launched, or had disappeared in a given year and country, or to missing data

on revenues or quantities). As for China, all observations for 1997 and 1998 have been dropped,

revenues and quantities are zero at the same time for all drugs. It is clear that China was not

observed these years, for unexplained reasons. After removing observations with zero revenue or

quantity, some active ingredients and ATC4 classes disappear but we still have 6091 different active

ingredients and 606 ATC 4 categories. Then, only the 251,558 branded drugs were kept (i.e. those

where the brand type is either a licensed brand or the original brand) in order to focus on revenues

from patented pharmaceutical innovations. This leads to dropping data from one country, India,

where brand type is always unavailable in the data (‘patent N/A’). In addition, this restriction leads

to dropping many other active ingredients (4503), formats (217) and ATC4 (217) that appear in

generic form only. Finally, since patents last 20 years, only the 68,219 observations that have their

first patent date (throughout the different countries) after 1977 are kept, in order to have at least one

observation (revenue & quantity) in all countries where the drug was sold. This leads to dropping

158,904 observations of old products with older first patent date, 5,568 with unknown first patent date

and 18,867 with uncoded first patent date. In total, our restrictions to current branded products with

complete data leads us to drop 1083 active ingredients, 151 ATC4, 109 formats and 30 patent years.

We end up with a data set where 630 active ingredients are present in 238 ATC4 classes. We also

categorize drugs into coarser ATC categories.

In the IMS data set, there are around 900 distinct on-patent products (that is, products which are

on patent at some time during the 11 years of the data). Some of these are basically the same product

in a different package.

All sales and prices are at the manufacturer levels, as reported by IMS, and thus approximate

actual prices, except to the extent of off-invoice discounts. We believe these off-invoice discounts are

not a very large factor in our data. For the US, Danzon and Furukawa (2006) compared the IMS
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prices with US average sales price (ASP), which includes all discounts, as reported by the Centers for

Medicare and Medicaid Services (CMS) for the corresponding quarter, and found that on average, the

IMS prices are similar to the ASPs. However, to the extent that unmeasured discounts exist, prices

and revenues may be overestimated here.

We also use demographic data (population and mortality data) from theWorld Health Organization

(WHO)3. Population has been extracted for the studied countries from available years since 1970. For

all available country-year, population is known by sex (M/F) and by age distribution (0, 1-4, 5-9,

. . . , 70-74, 75+), except for Mexico in 1977, where only total population by sex is available. Missing

population information is reconstructed through a regression in logs on a country specific effect and a

time trend which amounts to assuming that population evolves at a country specific annual growth rate

between available years of data that is allowed to change over time at the same rate across countries.

Mortality data across years and countries are available per disease category as classified using the

ICD-10 classification. The International Classification of Diseases (ICD) has evolved over time and

the most recent one is the ICD10 version. Of course, disease categories and drug categories (ATC

classes) are different things but one can attribute to each ATC class a "most likely" disease category

in the ICD 10 classification. These are summarized in Table 13 in the Appendix.

It is important to realize that the time series dimension of the demographic data contains little

"news", at least from year to year. Population projections change only slowly over time, as do mortality

risks in any given demographic category.

The dependent variable is the total number of new chemical entities marketed anywhere in our

14 countries in a given disease category throughout a given time period. Only about one-third of

the drugs approved annually in the United States are new compounds, or chemical entities; the rest

represent modified forms or new uses of existing drugs.

These data in combination allow us to measure how the global size of the market for a drug in a

particular category, for example, cardiovascular, shifts over years according to population and disease

profile, and also allows us to see how many new NCEs (New Chemical Entities) pharmaceutical firms

launch as the market size changes.
3See http://www.who.int/whosis/mort/download/en/index.html.
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4 Estimation Method

4.1 Heuristic description

The first step in estimating the elasticity of innovation is the construction of an expected revenue

measure. We do this by measuring market size over time for various disease categories in our set of

countries. Then we measure how many new products are introduced over time, again by category. We

describe our empirical procedure below.

We exploit differences across brand revenue in different therapeutic categories and different coun-

tries to estimate the potential market for an innovator in those different countries. For example, at

launch the brand will have a share of revenues in the therapeutic category in the country. These

revenues may change over time as the brand goes through its lifecycle, and will begin to decline when

the patent expires and the brand faces significant new competition, or when the entry of substitute

drugs causes the brand’s price and/or share to drop. These patterns will vary across jurisdictions.

Price levels are determined by willingness to pay and the level of competition among products. A

nation’s ability and willingness to pay for healthcare will depend on whether it is nationally or privately

financed and on the preferences of consumers and voters. In general, prices for biopharmaceuticals

are higher in richer countries compared to poorer ones. Competitive conditions also vary by country

according to the conduct of buyers, and these affect the realized market size available to the innovator.

The different income levels and competitive landscapes across different nations will affect the price

levels observed in the data. In general, prices, market structures, entry, market exclusivity and other

features vary across countries. We will not model these because we can measure the average outcome,

namely revenue per drug, and we assume firms anticipate these market conditions when making R&D

decisions.

Then, our data let us compute the true global revenue obtained per innovation as observed in sales

revenue in the data. The advantage of such an approach is that the global revenue from an innovation

depends on the population using the new drug during its life cycle (not only on a given shorter period

of time) and on the willingness to pay of drug users, which is allowed to vary over time (in contrast

to Acemoglu and Linn, 2004).
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This approach thus takes into account the fact that each innovation has a life-cycle in the market

for pharmaceutical products which is clearly anticipated and which implies that sales are not uniformly

distributed during the duration of the patent life. It is expected that the diffusion of an innovation

may take some time, and that consumer-prescribers may have switching costs or learning costs that

delay the full adoption of an innovation. Moreover, the lifecycle of a drug is typically affected by the

competing and future innovations in the same drug category.

As mentioned above, there are two possible causal relationships that can appear in the data,

working in opposite directions. Market size and innovation might be positively related because a

particular market is expected to grow and therefore firms invest in new products for that market.

This is the relationship of interest in this paper. A second possibility is that a successful innovation

generates large sales due to its quality and novelty, and this causes the market (measured in dollars)

to be large.

To deal with this second possible relationship, we employ an instrumental variables approach. We

use as an instrument for each drug category a measure of potential demand. We operationalize this

idea by using population by age or gender by country and disease prevalence in different countries.

We do not use actual expenditures in any way in our instrument. We note that AL defines ”expected

market size”and employs it as an explanatory variable, not an instrument. Expected market size is

either the sum of expenditures on the class for all ages, or the sum of the number of drugs in the class

used by different ages weighted by population. A feature of our method we want to highlight is our

effort to avoid using the outcome of interest, innovation, in potential market size —either as number

of drugs or dollars.

Our instruments do not include expenditure, number of patients, or number of drugs available. Our

instruments are the population in different age categories by country and disease prevalence in different

countries. For these to be valid instruments we must assume innovation does not affect potential

market size, which requires that there are no changes in WHO-measured morbidity or mortality that

are driven by the innovation in the short run. Indeed, innovation in class c at period t can affect future

longevity and potential market size of later periods (as hypothesized by Cerda, 2007 for example), but
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not that of the current and subsequent periods corresponding to the patent life of the innovation. It

seems reasonable to assume that class specific innovations cannot affect population size in the short

run because of competing risks in other disease categories are likely to limit the immediate effect on

mortality of an innovation.

4.2 Formal Definition of Market Size

Let d denote an active ingredient (or chemical entity) in a particular use class, hereafter known as

a drug (all revenues correspond to revenues summed at the level of the chemical entity for different

forms or brands with that chemical entity). We denote by Rtd the revenue obtained for drug d at

year t. Given that the IMS data are converted into current dollars taking already account of each

year’s exchange rate, we measure these revenues by summing all countries’sales and transform them

into constant US dollars of 2007 using the Consumer Price Index for inflation. Our average drug has

positive revenues for about twenty years (while the patent only last for 20 years, the brand is not

typically launched until years after filing, and brands typically earn profits after patent expiration in

many markets.) This leads us to write the total revenue obtained thanks to the patent for drug d as

R̃d =
∑t0+20

t′=t0
δt
′−t0Rt

′
d

where δ is the discount factor. We assume that these discounted revenues per drug determine invest-

ment decisions of firms.

We denote by C = {1, .., C} a partition of the set of therapeutic classes (the 1 digit ATC classes).

For a sub-set of drugs in set c ∈ C that are launched in year t, we denote by W t
c the sum of global

revenues obtained in this segment c by all innovations of period t :

W t
c =

∑
{d∈c,t0=t}

R̃d

We will call this the “period t innovation - class c”market size.

Then, we denote by N t
c the number of new chemical entities (active ingredients) patented at t in

class c. There is no revenue W t
c (W

t
c = 0) when no drug was patented that year in that category.

As our model shows, we expect a positive relationship between market size and innovation. In the
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empirics this shows up as the relationship between the number of new chemical entities per class in

period t (N t
c) and the period t innovation size of class c (W

t
c ).

The arrival of new products on the market is stochastic due to uncertainties in the research process

and in regulatory approval. Our measure of innovation in a single year will be lumpy from year to year

and contains zeros. However, as discussed above, because there is little new news in demographics

every year, we use periods of 4 years for t, a procedure which smooths out our innovation measure N t
c .

4.3 Imputation of Revenues over Drugs Life-cycle

Before going further on the empirical estimates, it is important to observe that we cannot forecast

expected revenues entirely by taking means of actual revenues by therapeutic class, entry date, and

year, because we do not see enough drugs nor the entire lifecycle of most drugs in the data since

we observe only 11 years of data. Thus, we implement an imputation method to obtain a series of

parameters for each ATC class that allows us to predict revenue for a drug over its entire lifecycle

using the average lifecycle within the class. We then use this estimate as the forecast of manufacturers

making innovation decisions.

Thus, for a given drug d, the data do not allow us to observe all the Rtd for years t
0, t0 + 1, ...,

t0 + 19. As we want to take into account the lifecycle of drugs, we compute the average evolution of

revenues of new chemical entities within a class c between patent age τ and τ + 1 as the ratio between

patent age τ and τ + 1 of average revenue (across active ingredients) for all drugs of a given drug

category c. Defining Γ(c) as the set of drugs in class c, we can also use the following definition 4:

λτc =
1

#Γ(c)

∑
d∈Γ(c)

Rt
0+τ+1
d

Rt
0+τ
d

Assuming that the expected revenue of a drug of class c will follow the life-cycle pattern estimated using

these λτc we can estimate the revenue at a given future patent year. Then, when R
τ+1
d is not observed,

we estimate it with Rt
0+τ+1
d = λτc(d)R

t0+τ
d which allows us to reconstruct the lifecycle revenues of any

drug on the market during the period of our data.

4Using a definition of λτc that gives weights to active ingredients proportional to their revenue in the class, we have

λτc =
∑
d∈Γ(c) R

t0+τ+1
d∑

d∈Γ(c) R
t0+τ
d

, which leads to similar results.
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5 Empirical Results

We will consider two levels of ATC classes C and C′. The finer level of classification (2 digit ATC

classes) considered will be C′. A class denoted c′ will thus correspond to an element of this finer

classification. With the previous notations, W
t
c

Nt
c
is the lifecycle revenue per new chemical entity in class

c and "born" during patent period t. All revenues are expressed in thousands of 2007 US dollars and

the discount factor used is δ = 0.95.

5.1 Descriptive Statistics

Table 1 presents descriptive statistics by ATC class on the number of innovations and lifecycle revenues

per ATC class at level 1. Table 2 shows the same statistics as Table 1 but using the 2 digit ATC

classification. Tables 3 and 4 present the same data as Tables 1 and 2, but averaged not over ATC class

but according to the number of new chemical entities. This shows a broad descriptive relationship

between market size and the number of new chemical entities.

On average, the total revenue per ATC class seems to be increasing with the number of innovations

except when the number of innovations is the largest. This result holds on aggregate and does not

account for the heterogeneity of revenues and innovations across categories of ATC classes.

5.2 Lifecycle of drugs

In order to impute some unobserved revenues, we described above a method of imputation which

consists in estimating average lifecycle of drug revenues per ATC class. The estimation of these average

lifecycle of drugs is interesting and shown in next Figure 1 for all categories (digit 1 ATC classes) and

patent ages. Figure 1 shows the mean revenues of drugs by class for each patent age and ATC-1.

Remark that for these shapes to be seen on a same picture, we have normalized the total sales for

patent year 10 for all drug classes, which implies that the height of each vertical bar should not be

compared across drug categories.

We can see that the lifecycle of sales of drugs is not uniform across classes. Some classes have longer

delays of penetration, some classes have lower duration. These lifecycle shapes also show that sales

are not at all uniform during the patent life and thus that it seems important to take into account the
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Figure 1: Means of Revenue by Patent Age for Each ATC-1
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Figure 2: Estimated λτc by ATC-1 and patent age

expected lifecycle of the patent revenues of drugs in the incentives to innovate for the pharmaceutical

industry.

This variability shows why the coeffi cients λτc will have some variation across patent age and across

classes. Figure 2 shows the obtained coeffi cients for all classes and patent ages. These coeffi cients

will be used for imputation of life-cycle revenues for future years on still young drugs. Though these

life-cycle of revenue per drug are averages, our estimated revenues using expected life-cycle patterns

are valid provided firms do not have better information on expected revenues during the lifecycle of

new drugs.

5.3 Elasticity of Innovation to Market Size

We now look at the relationship between the number of innovations or New Chemical Entities N t
c at

period t in category c and our "market size" W t
c . In each year we have data from 238 therapeutic

classes. As noted above, we sum revenue and innovation in four year periods (which reduces the
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sample size but creates much more content to each observation). Our time periods t are thus 1977-80,

1981-84, 1985-88, 1989-92, 1993-96, 1997-2000, 2001-04, 2005-2007.

We use several specifications to estimate the elasticity of innovation with respect to market size.

First, we estimate the following model

lnN t
c = α lnW t

c + βc + δt + εtc

which relates the number of innovations (number of NCEs) patented in period t in each class to the

total revenue provided by sales of all drugs (on patent and licensed) in the class during the duration

of the patents issued at t.

In this reduced form model, α can be interpreted as the elasticity of innovation to market size, βc

is a fixed unobserved effect specific to the ATC class c, δt is a common unobserved period effect and

εtc an unobserved random shock on the innovation outcome.

Assuming all right hand side variables are exogenous means that

E
(
εtc| lnW t

c , βc, δt
)

= 0

We first estimate such a model using OLS. Then we employ 2SLS because of the strong likelihood,

previously discussed, that innovation drives market size. Our instrumental variables are demographic:

population and mortality by disease (instead of prevalence which was not available) in different coun-

tries. To be valid instruments, demographics and disease mortality must be correlated with market

size. It is intuitive that the population and the share of the population likely to use drugs in each

ATC class will be correlated with the revenue in that class. Secondly, innovation, or launch of new

products, must not cause changes in demographics or disease mortality. We can imagine that at a

very fine level of categorization, this could be a problem. For example, a pill for Ausberger’s (mild

autism) might well increase diagnoses of Ausberger’s and therefore autism. But the WHO data we

use are much coarser: for example, how many people died of cardiovascular diseases in period t. We

do not think the therapies available for different cardiovascular diseases affect this measurement.

For this reason, we use male, female, and ”more than 50 years old”population variables, as well

as the number of deaths of males and females for the disease categories that each drug class (ATC
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class) can be considered to target. This instrument is thus varying across periods and drug classes.

These set of instruments are interacted with dummy variables for 1-digit ATC classes or 2 digit ATC

classes depending on the cases.

For the population measures we compute the size of the population in countries where drugs of

each ATC class are sold and sum this over countries and years for the duration of the patent. This

population is denoted P ct . This instrument is varying not only over time but also across ATC classes.

We use a similar definition for male or female population, and for the ”over 50 years old”population.

Table 6 details the different sets of instruments used in the regressions below. As will be shown later,

these sets of instruments satisfy the different usual tests of exclusion (Sargan test of overidentifying

restrictions) and of significance in the first stage (F test of joint significance of excluded IVs in the

first stage regression). In our empirical work, set A will be used for regressions at the ATC-1 level

and B, C or D for regressions at the ATC-2 level.

Recall that the number of innovations N t
c that can be observed on each market is censored at

zero, and that W t
c is unobserved when there are zero innovations. We have a fundamental problem of

unobserved potential market size of any innovation that did not happen and therefore need a truncated

regression model. In particular, it could be that εtc is not mean independent of all right-hand-side

variables because of the truncation of the model when N t
c = 0.

With some parametric assumptions on εtc, one can estimate the model taking into account the

truncation5. For example, as we are dealing with count data, we can assume a Poisson distribution

for the number of innovations, such that

P
(
N t
c = n

)
=

exp (−µ)µn

n!

where we specify the intensity parameter µ as µ = exp
[
αW t

c + βc + δt
]
. Such a model implies that

E
(
N t
c |W t

c , βc, δt
)

= exp
[
αW t

c + βc + δt
]

As the data are truncated at zero sinceW t
c is unobserved whenN

t
c = 0, we correct for the truncation

5Nonparametric estimation of such a truncated regression model is diffi cult and is a subject of ongoing research (Lewbel
and Linton, 2002, Chen 2009). Chen (2009) and Lewbel and Linton (2002) show that if the exogeneity assumption of right
hand side variables is satisfied, then with some additional technical assumptions, one can identify the non parametric
conditional expectation of the truncated dependent variable conditionally on the right hand side variables.
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using the zero-truncated Poisson maximum-likelihood regression implying that

P
(
N t
c = n|N t

c > 0
)

=
exp (−µ)µn

n! (1− exp (−µ))
with µ = exp

[
αW t

c + βc + δt
]

In this case, we take into account the endogeneity ofW t
c using a control function approach. As suggested

by Wooldridge (2002) and Blundell and Powell (2003), this technique is useful for non linear models.

It amounts to perform a first stage regression of the endogenous variables on all exogenous variables

and excluded instruments and then use residuals and polynomials of these residuals as additional

"control" variables in the main regression (here the zero-truncated Poisson). The results of this first

stage regressions6 show that excluded instruments are statistically significant (as confirmed also by the

joint F test shown at the bottom of the Tables). Results show that excluded IVs from sets A, B, C or D

are significant and the F test of joint significance always rejects strongly that they have no explanatory

power. In the case of the control function approaches, we used sets of instruments A for analysis of

N t
c and D for N t

c′ but results are similar with other sets of instruments. In the case of ATC-1 level

regressions, instrumental variables A proved satisfactory and consist in male and female population

of corresponding countries, male and female deaths of corresponding ATC-1 class and countries. In

the case of ATC-2 level regressions, instrumental variables B, C or D proved satisfactory and consist

different male or female demographic variables interacted with ATC-1 or ATC-2 dummies.

In all following tables, standard errors are clustered at the class level and shown in parentheses.

Although dummy variables δt for time periods are not shown to conserve space, they are always

significant. Tables 7 and 8 show the results of estimating the linear model for the 1-digit and 2-digit

ATC categories respectively. Tables 9 and 10 show the corresponding results of the estimation of the

count models. In each case we show results with and without instrumenting for potential market size.

All standard errors are clustered at the ATC-1 level.

The specifications yield a range of elasticities between 6% and 40%, meaning that increasing

market size by 1% yields an increase in the number of new products of 0.06 to 0.4%. There is no clear

relationship between the elasticity and the type of specification (linear versus count, one-stage versus

two-stage) or the instrument set. Overall, our preferred specification among these is Equation (13).

6Available in additional online appendix available upon request in Table 14.
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It takes into account the truncated nature of the data and the need to use instrumental variables,

and it uses the finer set of instruments in which the demographic variables are interacted with 2-digit

therapeutic categories, thus taking account of the fact that different demographic profiles generate

different market sizes in the various treatment categories. It uses the finer 2-digit disease classification

for the dependent variable, which we prefer because we understand it is relatively rare for drugs in

one ATC-2 category to be discovered while searching for therapies in a different ATC-2 category.

Equation (13) yields an elasticity of 12.3%, with a t-ratio of around 5, which gives the elasticity

a confidence interval of around 8% to 17%7. Given the assumptions of our model, this implies that

entry costs must be increasing in market size (since the marginal innovation requires substantially

higher revenue than the average innovation). Since we have no independent measure of quality we

cannot of course rule out the possibility that this is because the quality of pharmaceutical products

is increasing as market size increases. However, another interpretation is possible, which is that

innovation is subject to significant decreasing returns. This may be true both with respect to number

of innovations in a segment (the industry may be running out of "low-hanging fruit" - see Cowen

(2011)), and also true over time - the costs of regulatory approval appear to have been rising in recent

years. Although our results do not directly test the "low hanging fruit" hypothesis (because they

depend on the validity of our particular model of innovation) they are certainly compatible with it.

However, for this very reason the assumption that the elasticity is the same across disease categories

may not be realistic, since the extent to which the industry has had low-hanging fruit may well vary

for scientific reasons from one disease category to another. To investigate this possibility we estimate

the count model with ATC specific market size coeffi cients αc using

P
(
N t
c = n|N t

c > 0
)

=
exp (−µ)µn

n! (1− exp (−µ))
with µ = exp

[
αcW

t
c + βc + δt

]
which also implies that the elasticity to market size of the expected number of innovations is ∂ lnENt

c
∂ lnW t

c
=

αcW
t
c .

Given the size of the elasticity, we can also compute how much additional revenue in a given drug

category is needed to obtain one additional innovation as the inverse of the elasticity times the average

7This point estimate enables us easily to reject the hypothesis of an elasticity equal to 1.
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revenue per innovation observed on the market (because dWc =
(
∂ lnNc
∂ lnWc

)−1
Wc
Nc
)

Table 11 reports such results and Table 12 reports then the obtained elasticities by ATC class.

We find higher elasticities on average than in the model with the elasticity constrained to be constant

across disease categories, though they remain within the range of elasticities found under previous

specifications.

We see that the elasticities of innovation vary by ATC class, and that the average lifecycle dis-

counted market size increase needed on average to obtain one additional NCE also varies across

classes. For comparison, we estimate the log-linear model with ATC-1 specific elasticities (results not

reported), and find larger absolute values than in a specification without heterogeneity. The values

are a little smaller than those of this count model, varying between 8% and 30% depending on the

disease class.

Across all ATC classes, we find that the average elasticity of innovation to market size under this

specification is 25.2%, which implies that the average lifecycle discounted market size increase needed

to obtain one additional NCE is around $1.8 billion. Remember that we used a discount factor of

0.95 which implies that the $1.8 billion over the lifecycle of a drug is equivalent to a constant annual

revenue of $148 million per year over 20 years.

Next we consider whether this estimated $1.8 billion is reasonable. The most recent DiMasi et al.

study of drug development estimates that a new drug incurs approximately $800 million in development

costs (Adams, 2006, Di Masi et al. 2003 suggest 1$billion on average for one new chemical entity).

Included in this calculation is the cost of capital, the cost of failed drugs, and the cost of clinical trials,

so it is close to the total fixed economic cost of innovation. On top of this there will be variable costs

of production, distribution and marketing. Industry sources have suggested to us that 50% of revenue

is a reasonable guess at the size of these costs (though they may be higher in the case of biologics,

where manufacturing costs are typically higher). This suggests that a new drug would need to cover

costs of around $1.6 billion in order to yield a return to the innovator. This is a little lower than our

estimated market size increase of $1.8 billion needed to induce an additional innovation. Our elasticity

estimate therefore seems broadly plausible in the light of what is known from accounting data.
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Comparing our elasticities to others in the literature is diffi cult, if only because the dependent

variable changes across research designs from new drugs, to new cancer regimens, to new clinical trials,

to journal articles. However, both AL and we use new product launch as a measure of innovation.

Recall that AL estimate an elasticity of 4: for each 1% increase in revenue, the number of new products

increases by 4%, which is over an order of magnitude larger than our estimate (and of most others in

the literature). There are significant empirical differences that underlie these two different results. For

example, all new products including new forms, strengths, and generic versions are counted in the AL

methodology. The authors include only US revenue in their measure of market size. Lastly, as noted

above, the method in AL does not include an instrument for market size. Though it is hard to know

the impact of these methodological differences (explained in Appendix 7.1), an elasticity as large as 4

appears to imply that marginal costs of innovation are falling as more innovation takes place, which

does not seem a plausible description of the pharmaceutical industry in the early 21st century.

6 Conclusion

This paper has attempted to quantify the relationship between market size and innovation in the

pharmaceutical industry. We have estimated the elasticity of innovation (as measured by the number

of new chemical entities appearing on the market for a given disease class) to the expected market

size, which is predictable by the potential demand as represented by the willingness of sufferers from

diseases in a class (and others acting on their behalf such as insurers or governments) to spend on their

treatment. We have found significant positive elasticities with a point estimate under our preferred

specification of 25.2%. This suggests that at the mean market size an additional $1.8 billion is required

in additional revenue to induce the invention of one additional new chemical entity, which appears a

reasonable order of magnitude since estimates of the true economic cost of developing a new chemical

entity are around $800 million to $1 billion, and marketing and related costs represent some 50% of

revenue. An elasticity substantially below one is also plausible in the light of other evidence that

innovation in pharmaceuticals is becoming more diffi cult and expensive over time, and is compatible

both with the hypothesis that the costs of regulatory approval are rising and the hypothesis that the
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industry is running out of ”low hanging fruit.”

Our results are robust to a number of specification choices. However, the availability of data for

more years would undoubtedly help to refine our estimates and we leave this as a subject for future

research.
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7 Appendix

7.1 Analysis of Elasticity to Contemporaneous Revenue

Suppose we assume instead that lnN t
c = αW t

c . In this case we would want to know the bias that comes

from using the contemporaneous revenue R rather than W . In our empirical work, this amounts to

study the derivative of E
(
lnN t

c |Rtc
)
with respect to Rtc. Then,

lnN t
c = α

∑
{d∈c,t0a=t}

R̃d = α
∑

{d∈c,t0d=t}

t0d+20∑
t′=t0d

δt
′−t0dRt

′
d



= α

 ∑
{d∈c,t0d=t}

Rtd

+ α

 ∑
{d∈c,t0d=t}

t0d+20∑
t′=t+1

δt
′−t0dRt

′
d


= αRtc − α

∑
t′<t

∑
{d∈c,t0d=t′}

Rtd

+ α

 ∑
{d∈c,t0d=t}

t0d+20∑
t′=t+1

δt
′−t0dRt

′
d


because Rtc =

∑
{d∈c}R

t
d =

∑
t′<t

∑
{d∈c,t0d=t′}R

t
d +

∑
{d∈c,t0d=t}R

t
d.

Then

E
(
lnN t

c |Rtc
)

= αRtc − αE

∑
t′<t

∑
{d∈c,t0d=t′}

Rtd

∣∣∣∣∣∣∣Rtc
+ αE

 ∑
{d∈c,t0d=t}

t0d+20∑
t′=t+1

δt
′−t0dRt

′
d

∣∣∣∣∣∣∣Rtc


and both E
(∑

t′<t

∑
{d∈c,t0d=t′}R

t
d

∣∣∣Rtc) and E
(∑
{d∈c,t0d=t}

∑t0d+20

t′=t+1 δ
t′−t0dRt

′
d

∣∣∣Rtc) have no reason
to be zero if there is some correlation between revenues for the same drug across periods (which is

obviously the case). Remark that if revenues per drug are all independent and that we only have time

autocorrelation of revenues then both terms should be positive and thus E
(
lnN t

c |Rtc
)
could be either

higher or lower than αRtc.

If for example the revenues of a drug d in year t and t0d are proportional to a scale factor depending

only on the class to which it belongs to and the patent age t− t0d, then Rtd = λ
t−t0d
c R

t0d
c and

E
(
lnN t

c |Rtc
)

= αRtc

1 +

 ∑
{d∈c,t0d=t}

t0d+20∑
t′=t+1

δt
′−t0dλ

t′−t0d
c


− αE

∑
t′<t

∑
{d∈c,t0d=t′}

Rtd

∣∣∣∣∣∣∣Rtc


where
∑
{d∈c,t0d=t}

∑t0d+20

t′=t+1 δ
t′−t0dλ

t′−t0d
c would be equal to 20 if revenues are constant per drug during

the patent life and there is no discounting. Thus, unless E
(∑

t′<t

∑
{d∈c,t0d=t′}R

t
d

∣∣∣Rtc) is also positive
and very large,

∂E(lnNt
c |Rtc)

∂Rtc
would be much larger than α.
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7.2 Tables

Mean

ATC class (C) W t
c

W t
c

Nt
c

N t
c

A: ALIMENTARY TRACT AND METABOLISM 1,997,804 163,861 11.14
B: BLOOD AND BLOOD FORMING ORGANS 3,702,647 500,500 6.67
C: CARDIOVASCULAR SYSTEM 3,308,496 244,188 15.40
D: DERMATOLOGICALS 154,468 26,107 5.00
G: GENITO URINARY SYSTEM AND SEX HORMONES 766,613 186,571 5.33
H: SYSTEMIC HORM.PREP., EXCL. SEX&INSULINS 12,370 5,821 2.20
J: ANTIINFECTIVES FOR SYSTEMIC USE 5,143,922 287,501 14.86
L: ANTINEOPLASTIC&IMMUNOMODULATING AGENTS 6,186,711 356,246 12.29
M: MUSCULO-SKELETAL SYSTEM 2,535,125 435,702 6.17
N: NERVOUS SYSTEM 922,066 110,055 8.86
P: ANTIPARASITICS INSECTICIDES REPELLENTS 9,098 4,550 1.50
R: RESPIRATORY SYSTEM 817,246 106,632 7.40
S: SENSORY ORGANS 176,557 51,686 4.40
V: VARIOUS 19,844 18,984 2.00
Table 1: Total lifetime revenues per 1-digit ATC class of NCEs patented by period,

number of entities per period, and revenue per entity Unweighted averages by 1-digit

ATC class

Mean

ATC class (C) W t
c′

W t
c′

Nt
c′

N t
c′

A: ALIMENTARY TRACT AND METABOLISM 388,462 102,304 2.19
B: BLOOD AND BLOOD FORMING ORGANS 2,019,626 829,969 3.64
C: CARDIOVASCULAR SYSTEM 612,684 195,831 3.04
D: DERMATOLOGICALS 51,489 27,669 1.72
G: GENITO URINARY SYSTEM AND SEX HORMONES 328,549 110,245 2.29
H: SYSTEMIC HORM.PREP., EXCL. SEX&INSULINS 7,731 6,934 1.38
J: ANTIINFECTIVES FOR SYSTEMIC USE 1,895,129 426,227 5.47
L: ANTINEOPLASTIC&IMMUNOMODULATING AGENTS 1,968,499 368,424 3.91
M: MUSCULO-SKELETAL SYSTEM 845,042 265,548 2.11
N: NERVOUS SYSTEM 208,208 91,401 2.06
P: ANTIPARASITICS INSECTICIDES REPELLENTS 9,098 4,550 1.50
R: RESPIRATORY SYSTEM 240,366 63,373 2.53
S: SENSORY ORGANS 109,696 32,718 3.13
V: VARIOUS 15,875 15,249 1.60
Table 2: Total lifetime revenues per 2-digit ATC class of NCEs patented by period,

number of entities per year, and revenue per entity Unweighted averages by 1-digit ATC

class
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Revenue W t
c Revenue per NCE W t

c
Nt
c

N t
c Mean Min Max Mean Min Max

1 44,201 3 372,409 44,201 3 372,409
2 173,872 13,027 727,520 86,936 6,513 363,760
3 195,064 235 779,383 65,021 78 259,794
4 443,281 6,070 880,492 110,820 1,518 220,123
5 3,381,172 409,923 9,158,344 676,234 81,985 1,831,669
6 746,740 38,124 1,808,956 124,457 6,354 301,493
7 4,157,717 8,753 17,409,894 593,960 1,250 2,487,128
8 1,157,414 54,902 2,212,882 144,677 6,863 276,610
9 1,266,605 208,775 3,891,499 140,734 23,197 432,389
10 971,439 672,811 1,344,233 97,144 67,281 134,423
11 2,089,586 118,487 5,354,649 189,962 10,772 486,786
12 901,498 901,498 901,498 75,125 75,125 75,125
13 4,552,097 1,309,560 7,794,634 350,161 100,735 599,587
14 2,670,899 1,908,117 3,433,681 190,778 136,294 245,263
15 2,510,007 1,005,747 3,344,799 167,334 67,050 222,987
16 2,124,496 2,124,496 2,124,496 132,781 132,781 132,781
18 6,913,570 2,370,214 12,676,093 384,087 131,679 704,227
19 12,188,488 12,188,488 12,188,488 641,499 641,499 641,499
20 1,038,019 126,984 1,949,054 51,901 6,349 97,453
21 13,795,792 13,795,792 13,795,792 656,943 656,943 656,943
22 18,427,938 18,427,938 18,427,938 837,634 837,634 837,634
23 5,039,901 3,835,333 6,244,468 219,126 166,754 271,499
24 3,958,308 3,958,308 3,958,308 164,929 164,929 164,929
Table 3: Total lifetime revenues per 1-digit ATC class of NCEs patented by period,

and revenue per entity Unweighted averages by 1-digit ATC class. Global revenue W t
c

and the number of innovations N t
c
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Revenue W t
c′ Revenue per NCE

W t
c′

Nt
c′

N t
c′ Mean Min Max Mean Min Max

1 81,850 0 3,659,126 81,850 0 3,659,126
2 636,227 119 14,847,439 318,113 60 7,423,720
3 947,625 52 9,146,061 315,875 17 3,048,687
4 665,355 111 2,880,434 166,339 28 720,108
5 657,552 11 3,170,524 131,510 2 634,105
6 1,285,697 29,206 4,605,718 214,283 4,868 767,620
7 1,733,441 7,723 3,284,163 247,634 1,103 469,166
8 6,358,466 1,096,551 16,636,591 794,808 137,069 2,079,574
9 998,505 998,505 998,505 110,945 110,945 110,945
10 5,381,413 117,730 10,645,097 538,141 11,773 1,064,510
11 2,939,500 2,403,055 3,475,944 267,227 218,460 315,995
12 10,976,667 10,976,667 10,976,667 914,722 914,722 914,722
13 9,739,879 9,739,879 9,739,879 749,221 749,221 749,221
16 1,242,968 1,242,968 1,242,968 77,685 77,685 77,685
19 1,909,830 1,909,830 1,909,830 100,517 100,517 100,517
Table 4: Total lifetime revenues per 2-digit ATC class of NCEs patented by period,

and revenue per entity Unweighted averages by 1-digit ATC class

ATC Class (C) Mean Price
A: ALIMENTARY TRACT AND METABOLISM 111
B: BLOOD AND BLOOD FORMING ORGANS 544
C: CARDIOVASCULAR SYSTEM 10
D: DERMATOLOGICALS 22
G: GENITO URINARY SYSTEM AND SEX HORMONES 23
H: SYSTEMIC HORM.PREP., EXCL. SEX&INSULINS 266
J: ANTIINFECTIVES FOR SYSTEMIC USE 67
L: ANTINEOPLASTIC&IMMUNOMODULATING AGENTS 382
M: MUSCULO-SKELETAL SYSTEM 95
N: NERVOUS SYSTEM 6
P: ANTIPARASITICS INSECTICIDES REPELLENTS 8
R: RESPIRATORY SYSTEM 13
S: SENSORY ORGANS 187
V: VARIOUS 636

Table 5: Descriptive statistics on Average Price of Drugs (across countries)
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Set Instruments
A · Male and Female Population of corresponding countries

· Male and Female Deaths of corresponding ATC-1 class and countries
B · Population aged 50 and over of corresponding countries, interacted with ATC-1
C · Male Population aged 50 and over of corresponding countries, interacted with ATC-1
D · Male Population aged 50 and over of corresponding countries, interacted with ATC-2

· Female Population aged 50 and over of corresponding countries, interacted with ATC-2
Table 6: Definition of Instrument Sets

Linear Model (1) (2)
OLS 2SLS

VARIABLES lnN t
c lnN t

c

lnW t
c 0.216*** 0.291***

(0.0289) (0.0465)
ALIMENTARY_TRACT_AND_METABOLISM 0.291*** 0.147

(0.0572) (0.0907)
ANTIINFECTIVES_FOR_SYSTEMIC_USE 0.549*** 0.318**

(0.0903) (0.144)
ANTINEOPLASTIC_IMMUNOMODULATING 0.527*** 0.366***

(0.0888) (0.139)
ANTIPARASITICS -0.133 0.282

(0.170) (0.280)
BLOOD_AND_BLOOD_FORMING_ORGANS 0.325*** 0.348***

(0.0314) (0.0401)
CARDIOVASCULAR_SYSTEM 0.681*** 0.465***

(0.112) (0.165)
DERMATOLOGICALS 0.245*** 0.330***

(0.0411) (0.0443)
GENITO_URINARY_SEX_HORMONES -0.128* -0.223**

(0.0659) (0.0964)
MUSCULO_SKELETAL_SYSTEM 0.166** 0.0564

(0.0674) (0.0949)
NERVOUS_SYSTEM 0.192** 0.0738

(0.0788) (0.121)
RESPIRATORY_SYSTEM 0.407*** 0.367***

(0.0525) (0.0686)
SYSTEMIC_HORM 0.248** 0.567***

(0.107) (0.158)
Observations 74 74
R-squared 0.832
Instruments A
Sargan Test (Degree freedom) 2.776 (3)
P-value 0.428

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 7: Determinants of the number of NCEs per therapeutic class Linear model,

1-digit ATC categories

42



Linear Model (3) (4) (5) (6)
OLS 2SLS 2SLS 2SLS

VARIABLES lnN t
c′ lnN t

c′ lnN t
c′ lnN t

c′

lnW t
c′ 0.0962*** 0.0870*** 0.0873*** 0.111***

(0.0106) (0.0207) (0.0206) (0.0174)
ALIMENTARY_TRACT_AND_METABOLISM -0.577*** -0.208*** -0.208*** -0.193***

(0.124) (0.0244) (0.0243) (0.0230)
ANTIINFECTIVES_FOR_SYSTEMIC_USE -0.162 0.251*** 0.250*** 0.184***

(0.147) (0.0582) (0.0583) (0.0456)
ANTINEOPLASTIC_IMMUNOMODULATING -0.245 0.149*** 0.149*** 0.109***

(0.140) (0.0372) (0.0373) (0.0306)
ANTIPARASITICS -0.685*** -0.350*** -0.349*** -0.285***

(0.145) (0.0545) (0.0544) (0.0542)
BLOOD_AND_BLOOD_FORMING_ORGANS -0.352** 0.0381 0.0377 0.00788

(0.141) (0.0390) (0.0392) (0.0379)
CARDIOVASCULAR_SYSTEM -0.347** 0.0306 0.0305 0.0235

(0.147) (0.0267) (0.0267) (0.0309)
DERMATOLOGICALS -0.698*** -0.340*** -0.340*** -0.309***

(0.119) (0.0450) (0.0448) (0.0419)
GENITO_URINARY_SEX_HORMONES -0.493*** -0.129*** -0.129*** -0.111***

(0.132) (0.0346) (0.0345) (0.0351)
MUSCULO_SKELETAL_SYSTEM -0.567*** -0.197*** -0.196*** -0.174***

(0.121) (0.0380) (0.0379) (0.0367)
NERVOUS_SYSTEM -0.654*** -0.284*** -0.284*** -0.272***

(0.122) (0.0330) (0.0329) (0.0324)
RESPIRATORY_SYSTEM -0.356** 0.00362 0.00395 0.0349

(0.128) (0.0318) (0.0316) (0.0299)
SYSTEMIC_HORM -0.559*** -0.205** -0.205** -0.130

(0.0809) (0.1000) (0.0995) (0.0956)
Observations 231 231 231 231
R-squared 0.715 0.457 0.458 0.466
Instruments B C D
Sargan Test 8.923 8.846 31.23
Degree freedom 12 12 24
P-value 0.709 0.716 0.147

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 8: Determinants of the number of NCEs per therapeutic class Linear model,

2-digit ATC categories
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Count Models (7) (8) (9)
VARIABLES N t

c N t
c N t

c

W t
c 4.63e-08* 1.36e-07*** 1.13e-07***

(2.39e-08) (5.05e-08) (3.05e-08)
Corresponding Elasticity 0.103 0.303 0.252
ALIMENTARY_TRACT_AND_METABOLISM 1.798*** 0.748*** 1.727***

(0.101) (0.290) (0.157)

ANTIINFECTIVES_FOR_SYSTEMIC_USE 2.000*** 0.548* 1.784***
(0.128) (0.298) (0.232)

ANTINEOPLASTIC_IMMUNOMODULATING 1.725*** 0.487 1.284***
(0.221) (0.313) (0.410)

ANTIPARASITICS -0.353*** -1.101*** -0.905***
(0.136) (0.391) (0.130)

BLOOD_AND_BLOOD_FORMING_ORGANS 1.195*** 0.401 1.465***
(0.153) (0.313) (0.211)

CARDIOVASCULAR_SYSTEM 2.051*** 1.059*** 1.972***
(0.115) (0.265) (0.193)

DERMATOLOGICALS 1.165*** 0.230 1.098***
(0.107) (0.251) (0.132)

GENITO_URINARY_SEX_HORMONES 1.086*** 0.0937 1.010***
(0.111) (0.183) (0.142)

MUSCULO_SKELETAL_SYSTEM 1.274*** 0.234 1.170***
(0.0871) (0.268) (0.161)

NERVOUS_SYSTEM 1.723*** 0.704** 1.573***
(0.114) (0.294) (0.162)

RESPIRATORY SYSTEM 1.459*** 0.475** 1.465***
(0.0978) (0.210) (0.115)

SYSTEMIC HORMONES 0.282** -0.501** 0.0607
(0.121) (0.207) (0.122)

Observations 74 74 74
Method Poisson IV-Poisson Trunc-Poisson
Instruments A A
Control Function (IVs) Yes

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 9: Determinants of the number of NCEs per therapeutic class Count model,

1-digit ATC categories
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Count Models (10) (11) (12) (13)
VARIABLES N t

c′ N t
c′ N t

c′ N t
c′

W t
c′ 8.85e-08*** 5.67e-07*** 2.86e-07*** 1.73e-07***

(1.87e-08) (1.42e-07) (1.06e-07) (3.13e-08)
Corresponding Elasticity 0.0630 0.404 0.203 0.123
ALIMENTARY_TRACT_AND_METABOLISM 0.382*** -0.515** -0.0908 -0.00909

(0.125) (0.233) (0.151) (0.171)

ANTIINFECTIVES_FOR_SYSTEMIC_USE 1.314*** -0.128 0.890*** 0.978***
(0.0998) (0.285) (0.223) (0.141)

ANTINEOPLASTIC_IMMUNOMODULATING 0.861*** -0.313 0.633*** 0.616***
(0.151) (0.260) (0.209) (0.167)

ANTIPARASITICS -0.0607 - -0.967*** -0.899***
(0.184) - (0.158) (0.227)

BLOOD_AND_BLOOD_FORMING_ORGANS 0.774*** -0.165 0.652*** 0.579***
(0.156) (0.356) (0.184) (0.136)

CARDIOVASCULAR_SYSTEM 0.683*** -0.240 0.256 0.357*
(0.139) (0.234) (0.170) (0.189)

DERMATOLOGICALS 0.191 -0.531** -0.382*** -0.356**
(0.121) (0.260) (0.125) (0.180)

GENITO_URINARY_SEX_HORMONES 0.411*** -0.338 -0.00946 0.0476
(0.138) (0.259) (0.167) (0.201)

MUSCULO_SKELETAL_SYSTEM 0.390*** -0.618** -0.0599 -0.0713
(0.109) (0.268) (0.140) (0.152)

NERVOUS_SYSTEM 0.399*** -0.461* -0.0534 -0.00339
(0.113) (0.250) (0.138) (0.174)

RESPIRATORY SYSTEM 0.510*** -0.289 0.136 0.180
(0.140) (0.251) (0.157) (0.194)

SYSTEMIC HORMONES 0.188*** -0.565** -0.650*** -0.628***
(0.0730) (0.266) (0.0904) (0.122)

Observations 231 231 231 231
Method Poisson IV-Poisson Trunc-Poisson Trunc-Poisson
Instruments D A D
Control Function (IVs) Yes Yes

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 10: Determinants of the number of NCEs per therapeutic class Count model,

2-digit ATC categories
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Count Models (14) (15) (16) (17)
VARIABLES N t

c′ N t
c′ N t

c′ N t
c′

βc′
ALIMENTARY_TRACT_AND_METABOLISM 0.248* -0.206 -0.184 -0.180

(0.146) (0.282) (0.197) (0.195)

ANTIINFECTIVES_FOR_SYSTEMIC_USE 1.191*** 0.778** 0.970*** 1.055***
(0.139) (0.341) (0.196) (0.156)

ANTINEOPLASTIC_IMMUNOMODULATING 0.883*** 0.342 0.565*** 0.537***
(0.143) (0.331) (0.207) (0.186)

ANTIPARASITICS -0.737 - -12.68 -
(1.010) - (485.9) -

BLOOD_AND_BLOOD_FORMING_ORGANS 1.049*** 0.345 0.842*** 0.788***
(0.186) (0.426) (0.256) (0.230)

CARDIOVASCULAR_SYSTEM 0.653*** 0.265 0.373** 0.407**
(0.143) (0.274) (0.171) (0.168)

DERMATOLOGICALS -0.000612 -0.343 -0.661* -0.616*
(0.229) (0.452) (0.343) (0.342)

GENITO_URINARY_SEX_HORMONES 0.218 -0.403 -0.179 -0.158
(0.233) (0.322) (0.297) (0.296)

MUSCULO_SKELETAL_SYSTEM 0.326* -0.0223 -0.131 -0.0421
(0.193) (0.491) (0.259) (0.251)

NERVOUS_SYSTEM 0.0758 -0.255 -0.566** -0.548**
(0.187) (0.401) (0.277) (0.277)

RESPIRATORY SYSTEM 0.423** 0.169 0.104 0.144
(0.185) (0.291) (0.224) (0.224)

SYSTEMIC HORM 0.169 -0.357 -0.579 -
(0.365) (0.287) (0.642) -

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 11: Determinants of the number of NCEs per therapeutic class Count model,

2-digit ATC categories
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Count Models (14) (15) (16) (17)
VARIABLES N t

c′ N t
c′ N t

c′ N t
c′

αc′W
t
c′

ALIMENTARY_TRACT_AND_METABOLISM 2.78e-07*** 1.02e-06*** 4.12e-07*** 4.36e-07***
(7.42e-08) (2.86e-07) (1.08e-07) (9.18e-08)

ANTIINFECTIVES_FOR_SYSTEMIC_USE 1.28e-07*** 1.45e-07*** 2.66e-07*** 1.64e-07***
(2.53e-08) (4.53e-08) (6.88e-08) (3.03e-08)

ANTINEOPLASTIC_IMMUNOMODULATING 7.86e-08*** 2.57e-07 3.04e-07*** 2.14e-07***
(1.87e-08) (1.80e-07) (7.45e-08) (4.00e-08)

ANTIPARASITICS 6.10e-05 - 0.000689 -
(6.79e-05) - (0.0267) -

BLOOD_AND_BLOOD_FORMING_ORGANS -1.58e-08 4.75e-07 1.96e-07** 1.04e-07*
(4.13e-08) (2.93e-07) (9.31e-08) (6.20e-08)

CARDIOVASCULAR_SYSTEM 1.02e-07 2.70e-07** 2.09e-07** 1.81e-07**
(7.06e-08) (1.27e-07) (9.94e-08) (7.99e-08)

DERMATOLOGICALS 3.22e-06** 4.75e-06 4.83e-06*** 4.84e-06***
(1.43e-06) (9.35e-06) (1.62e-06) (1.62e-06)

GENITO_URINARY_SEX_HORMONES 5.96e-07** 2.09e-06*** 7.88e-07** 8.68e-07***
(2.71e-07) (6.17e-07) (3.11e-07) (3.08e-07)

MUSCULO_SKELETAL_SYSTEM 1.28e-07** 2.93e-07 3.46e-07*** 1.87e-07***
(5.65e-08) (6.42e-07) (9.57e-08) (6.10e-08)

NERVOUS_SYSTEM 1.22e-06*** 1.50e-06 1.86e-06*** 1.95e-06***
(3.60e-07) (1.26e-06) (4.54e-07) (4.51e-07)

RESPIRATORY SYSTEM 3.58e-07** 3.21e-07*** 4.85e-07** 4.56e-07**
(1.81e-07) (1.16e-07) (1.98e-07) (1.93e-07)

SENSORY ORGANS 3.79e-06*** 3.16e-06*** 3.57e-06*** 3.77e-06***
(8.58e-07) (8.60e-07) (9.05e-07) (9.08e-07)

SYSTEMIC HORM 5.37e-07 3.63e-05 -7.41e-06 -
(2.66e-05) (4.43e-05) (5.65e-05) -

Corresponding Elasticity 0.150 0.350 0.342 0.252
Observations 231 231 231 221
Method Poisson IV-Poisson Trunc-Poisson Trunc-Poisson
Instruments - D A D
Control Function (IVs) No Yes Yes

Note: A ll standard errors are clustered at the ATC-1 level.

*** m eans sign ificance at 1% level, ** at 5 % level and * at 10% level. Year dumm ies included are not shown.

Table 11 - continued
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Mean Mean
ATC class (C) αW t

c′
1

αE(Nt
c′)

(Elasticity)
A: ALIMENTARY TRACT AND METABOLISM 0.169 1,581,130
B: BLOOD AND BLOOD FORMING ORGANS 0.211 5,105,871
C: CARDIOVASCULAR SYSTEM 0.111 2,770,592
D: DERMATOLOGICALS 0.249 157,823
G: GENITO URINARY SYSTEM AND SEX HORMONES 0.285 685,940
J: ANTIINFECTIVES FOR SYSTEMIC USE 0.311 2,739,536
L: ANTINEOPLASTIC&IMMUNOMODULATING AGENTS 0.421 2,068,826
M: MUSCULO-SKELETAL SYSTEM 0.158 3,768,493
N: NERVOUS SYSTEM 0.407 377,481
R: RESPIRATORY SYSTEM 0.110 1,254,843
S: SENSORY ORGANS 0.413 145,829

All 0.252 1,809,658
Table 12: Elasticties and Market Size Generating One Innovation per class

ATC Class ICD10 Chapter ICD10 Blocks Disease Title
A14, A16 IV E00-E90 Endocrine, nutritional and metabolic diseases
Other A XI K00-K93 Diseases of the digestive system
B III D50-D89 Diseases of the blood and blood-forming organs

and certain disorders involving the immune mechanism
C IX I00-I99 Diseases of the circulatory system
D XII L00-L99 Diseases of the skin and subcutaneous tissue
G XIV N00-N99 Diseases of the genitourinary system
H IV E00-E90 Endocrine, nutritional and metabolic diseases
J I A00-B99 Certain infectious and parasitic diseases
L II C00-D48 Neoplasms
M XIII M00-M99 Diseases of musculoskeletal system and connective tissue
N1,N2,N3 VI G00-G99 Diseases of the nervous system
N4,N5,N6,N7 V F00-F99 Mental and behavioral disorders
P I A00-B99 Certain infectious and parasitic diseases
R X J00-J99 Diseases of the respiratory system
S1 VII H00-H59 Diseases of the eye and adnexa
S2 VIII H60-H95 Diseases of the ear and mastoid process
V XIX S00-T98 Injury, poisoning and certain other consequences

of external causes

Table 13: International Classification of Diseases and ATC drug categories

48


