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Abstract

We use a rich longitudinal dataset on department-level productivity in a contemporary field of sci-
ence to identify and decompose the causal impact of hiring a star on local knowledge production.
Specifically, we estimate the relative roles of knowledge spillovers versus recruiting externalities as
they affect co-located researchers who are related or unrelated to the star in idea space. Hiring a
star does not increase overall incumbent productivity, but this aggregate effect hides offsetting effects
on colleagues who are related (positive) versus unrelated (negative). Star hires improve subsequent
joiner quality for both related and unrelated scientists, although the effect is significantly larger for
related scientists. The overall positive impact of the star on department-level productivity is mainly
due to joiner-quality effects. Furthermore, the productivity impact is more pronounced at mid- and
lower-ranked institutions, suggesting implications for the optimal spatial organization of science and
university strategies aimed at ascending departmental rankings.
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Certainly in our own profession, the benefits of colleagues from whom we hope to learn are

tangible enough to lead us to spend a considerable fraction of our time fighting over who they

shall be, and another fraction travelling to talk with those we wish we could have as colleagues

but cannot. We know this kind of external effect is common to all the arts and sciences - the

“creative professions.” All of intellectual history is the history of such effects.

Robert Lucas (1988)

1 Introduction

An influential strand of modern growth theory emphasizes the importance of combining existing

ideas to produce new knowledge (Romer, 1990; Jones, 1995; Weitzman, 1998). As Mokyr (2002,

p. 7) notes: “[w]hat makes knowledge a cultural entity . . . is that it is distributed to, shared

with, and acquired from others; if that acquisition becomes too difficult, . . . knowledge will

not be accessible to those who do not have it but are seeking to apply it.” The challenges of

accessing knowledge and cooperating to produce new knowledge highlight the importance of

the spatial organization of science. However, in a modern market economy with free movement,

the ultimate location of scientific activity is largely unplanned, resulting from individual utility-

maximizing decisions, raising questions about the efficiency of the spatial allocation of scientists.

The efficient allocation is also likely to have changed over time. One reason is that the

extent and nature of scientific collaboration is itself evolving. Benjamin Jones (2009) develops

a “knowledge burden” theory that the depth and breadth of knowledge required to work at the

outward shifting research frontier is increasing, raising the returns to collaboration. Agrawal

et al. (2013) report data that support the knowledge burden hypothesis using the collapse of

the Soviet Union as a natural experiment; the sudden shock to the knowledge frontier caused by

the release of previously hidden research was more significant in some fields than others. They

show that fields that undergo a greater outward shift in the knowledge frontier subsequently

experience a disproportionate increase in collaboration. Furthermore, the rising knowledge

burden may increase the importance of co-location since proximity facilitates collaboration.
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Pulling in the opposite direction, however, is evidence that evolving communications technolo-

gies reduce the distance-related costs of collaboration (Agrawal and Goldfarb, 2008; Kim et al.,

2009). These forces have the potential to alter the spatial organization of science, including the

tendency (and desirability) of leading scientists to concentrate at top departments.

Another well-known feature of science is that the distribution of output is highly skewed

across scientists. Almost a century ago, Lotka (1926) observed that 6% of physicists produced

more than 50% of all papers. The relative importance of scientists in the right tail of the

output distribution – stars – has endured (Rosen, 1981; Narin and Breitzman, 1995; Ernst

et al., 2000). As our opening quote makes clear, however, the impact of stars on productivity

goes well beyond their own publications. The presence of star scientists could directly affect

their colleagues’ productivity; their presence could also affect subsequent recruitment through

a desire of others to be near them for productivity, reputational, or consumption reasons.

Thus, given the widely acknowledged importance of stars in science, it is surprising that

limited evidence exists on the consequences of recruiting them. An exception is Waldinger

(2012), who, utilizing the dismissal of scientists in Nazi Germany as a natural experiment, does

not find evidence of productivity effects on peers. This is curious since the broader peer-effects

literature documents significant productivity effects that are highly sensitive to the micro-

geography of interactions (Sacerdote, 2001; Mas and Moretti, 2009).1 Furthermore, Azoulay

et al. (2010) and Oettl (2012) both report significant star-specific peer effects, utilizing data on

unexpected star deaths as a natural experiment, although they both focus on coauthoring peers

as opposed to co-located peers. Moreover, the broader research on spillovers emphasizes spatial

relationships as a key determinant of knowledge flow patterns (Jaffe et al., 1993; Agrawal et al.,

2006; Singh and Agrawal, 2011; Catalini, 2013), although the focus in these papers concerns

the effect of co-location on the direction of research, as reflected in citation patterns as opposed

1Other studies focus on different benefits of stars, such as Zucker et al. (1998), who identify the location of star scientists
as a key determinant of the timing and location of the birth of biotechnology firms.
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to productivity.

In terms of recruiting externalities, the existing evidence is more uniform. Notwithstanding

his earlier finding of an absence of peer productivity effects, Waldinger (2013) uncovers evidence

of long-lasting effects on the quality of recruits of star dismissals in Nazi Germany. Roach and

Sauermann (2010) report a strong preference of scientists to work with the best scientists

possible.

Little is known, however, about the factors that influence the relative roles of these local

knowledge spillovers and recruiting externalities. The distinction has important implications.

For example, if recruiting externalities play a significant role, then a department with resources

for further growth through additional hiring will enjoy higher returns from recruiting a star than

an otherwise similar department that is not able to make additional hires and thus is unable to

benefit from those externalities. However, these departments would experience similar returns

from recruiting a star if the benefits are instead primarily due to knowledge spillovers.

Thus, we examine the question of why stars matter. To generate testable hypotheses, we

first develop a model of how the hiring of a star affects incumbent productivity and the quality

of subsequent recruitment. We assume Romer-style, knowledge-production functions, where

incumbent productivity depends on local knowledge stocks. The impact of these stocks is

allowed to differ depending on whether the knowledge is related or unrelated to the research of

the incumbent scientist.

Hiring a star has direct positive impacts on incumbent productivity, and these effects are

assumed to be larger for related incumbents. The proportional direct impact is also larger for

lower-ranked institutions since the star’s knowledge stock is a larger proportion of the total local

stock. Critically, however, the star’s impact on incumbent productivity is also conditioned on

the impact of the star hire on subsequent recruitment. We introduce the idea of a recruitment

function to capture this recruitment channel. For a given research area, this function shows

how the quality of the applicant pool depends on existing local knowledge stocks, as well as on
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the speed with which the quality of the marginal hire declines with the number of hires in a

particular research area.

We show that the average quality of subsequent joiners in both related and unrelated areas

rises as a result of hiring a star. However, the star hire also shifts the optimal composition of

hiring towards scientists working in areas related to the star. Overall, it is possible for the pro-

ductivity of unrelated incumbents to decline relative to a no-star-hire baseline, notwithstanding

a direct positive impact on their productivity.

The model suggests a number of testable hypotheses. A star hire will: 1) increase the

productivity of related incumbents; 2) increase or decrease the productivity of unrelated in-

cumbents, depending on the balance of the direct effect of the star’s knowledge stock and the

indirect effect through the composition of subsequent hiring; 3) increase the quality of both

related and unrelated joiners; and 4) have larger proportional effects on incumbent productivity

and joiner quality in lower-ranked institutions.

We use a rich longitudinal dataset on incumbent and joiner productivity in a contemporary

field of science to identify the causal impact of hiring a star on department-level productivity.

We examine the effect of hiring a star on incumbent productivity, distinguishing between in-

cumbents who are related and unrelated to the star in “idea space.” We also examine the effect

of the star hire on the quality of subsequent recruits, again distinguishing between related and

unrelated joiners. Finally, we examine how the incumbent and joiner effects are mediated by

the rank of the hiring institution. Taken together, these results allow us to look inside the

black box of how the location of stars affects scientific knowledge production and to better

understand the forces driving the spatial organization of science.

We base our productivity estimates on a sample of 255 evolutionary biology departments

that published 149,947 articles over the 29-year period 1980 to 2008. We employ a difference-

in-differences estimation approach, comparing the productivity of “treated” to “control” de-

partments before versus after the arrival of a star, to estimate the impact of a star hire on
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department productivity, where treatment refers to the recruitment of a star. Importantly,

we distinguish between incumbent versus joiner scientists in the department and also between

those whose work is related versus unrelated to the star.

We find evidence of a large overall star effect. On average, department-level output increases

by 54% after the arrival of a star. A significant fraction of the star effect is indirect: after

removing the direct contribution of the star, department level output still increases by 48%. In

terms of department-level productivity, which we estimate by controlling for department size,

we observe a 38% increase after excluding the star’s contribution. This implies that much of

the observed indirect output gains are due to increasing department quality, not just size. The

effect does not seem to diminish even by the end of our sample period, eight years after the

arrival of a star.

We next turn our attention to composition and distinguish between incumbent scientists who

are in the department prior to the star and new recruits (or “joiners”) who join the department

after the arrival of the star. We further decompose the samples of incumbents and joiners into

those who conduct research related to the star versus those who do not. We find that related

incumbents increase their productivity after the arrival of the star by 69%, whereas the effect on

unrelated incumbents is negative, perhaps due to resource shifting (negative point estimate, but

statistically insignificant at standard levels). The overall star effect on incumbent productivity

(related and unrelated combined) is neutral. Thus, we offer a first step towards reconciling the

seemingly contradictory findings described above by reporting evidence that is on the one hand

consistent with Waldinger (that is, no aggregate productivity effect on incumbents from hiring

a star) and on the other hand consistent with others (that is, significant productivity effects

on some) by disaggregating departments and distinguishing between co-located peers who are

related versus unrelated to the star in terms of their position in idea space.

We then examine the impact of hiring a star on the quality of joiners. Since by definition

joiners are not present in the department in the pre-star period, we shift our analytical ap-
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proach to examining the quality of joiners (measured by the citation-weighted stock of their

publications) who join the department in the years before versus after the arrival of the star.

Overall, the quality of joiners jumps significantly (68%) after the arrival of a star. When we

split the sample into related and unrelated joiners, the estimated increase in the quality of

related joiners is a striking 434%. Interestingly, the quality of unrelated joiners also increases

by 48%. Thus, although stars do not seem to generate production externalities (spillovers) for

unrelated incumbents, they do appear to provide recruiting externalities for unrelated scientists

that lead to attracting higher-quality joiners.

Reflecting on these results, we decompose the overall indirect star effect (38%) to determine

the relative importance of production versus recruiting externalities. Overall, based on rough

calculations that extrapolate from mean productivity changes in response to a star’s arrival,

we estimate that roughly 11% of this effect is due to a boost in related incumbent productivity,

0% is due to a boost in unrelated incumbent productivity, 42% is due to a quality increase

in related joiners, and 47% is due to a quality increase in unrelated joiners.2 The impact

from unrelated joiners is high relative to related joiners, despite a significantly greater quality

increase in related joiners, due to a larger average number of unrelated joiners.

We also examine the extent to which the star effect on department-level productivity is cor-

related with department rank. We assume that a star’s share of their department’s knowledge

stock is greater at lower ranked institutions; thus, as per the model, we expect the direct pro-

2These calculations are crude. The mean output value prior to a star’s arrival for treated departments is 42 citation-
weighted publications. A 38% increase corresponds to an increase of 16 citation-weighted publications after the first star’s
arrival. We disaggregate this increase into the fractions from related versus unrelated peers. While the output of related
scientists increases by 152% (exp(.924)-1), the mean is only 5.7 citation-weighted publications, corresponding to an increase
in 8.6 citation-weighted publications, or 53% of the total 16 citation-weighted publications. Unrelated scientists experience
a 21% increase in output from a baseline of 36, resulting in an increase in 7.6 citation-weighted publications, or 47% of
the the total 16 citation-weighted publications. Since the output of unrelated incumbents never increased after the star’s
arrival, unrelated joiners account for 47% of the total increase. Related incumbents, however, experience a 70% increase in
output after the star’s arrival from a baseline of 2.6 citation-weighted publications prior to the star’s arrival or 1.8 citation-
weighted publications. Thus, if 1.8 citation-weighted publications (11% of 16) can be attributed to related incumbents, then
the remaining 6.8 (42% of 16) citation-weighted publications of the total 8.6 related scientist increase can be attributed to
joiners.
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portional productivity effect of hiring a star to be larger at lower-ranked institutions. Indeed,

we find that the star effect is significantly greater at lower-ranked institutions.

Finally, we explore the role of star engagement. Some stars engage with their new colleagues

significantly more than others. Does engagement level influence the externalities stars generate

for their department’s productivity, or is their presence alone enough? We find that engagement

through collaboration explains most of the increase in incumbent productivity but only a much

smaller fraction of the increase in quality of new recruits.

Our analysis is subject to identification concerns. For example, it is possible that stars

are attracted to moving to departments that are on the rise, rather than stars arriving at a

department and causing the rise in productivity. In addition, it is possible that an omitted

variable, such as a positive shock to department resources (e.g., philanthropic gifts, sharp

increases in government funding, the construction of a new building), causes the department to

both increase its chances of hiring a star and increase its overall productivity in terms of both

incumbent productivity and the quality of subsequent recruits. Our difference-in-differences

estimation method partially addresses these concerns by controlling for general productivity

trends (treated versus control departments) and department-specific attributes (before versus

after with department fixed effects).

To complement our initial empirical approach, we take three additional steps that, while

not fully ruling out alternative explanations, give us further confidence that the relationship

between the arrival of a star and department productivity is indeed causal. First, we employ

a spline regression analysis for all results reported above (main star effect, star effect with

star output netted out, star effect on incumbents, star effect on joiners, star effect on related

versus unrelated for both incumbents and joiners). In all cases, we find: 1) the main effect

persists over time (throughout the eight years examined after the arrival of the star), and 2) no

evidence of a pre-trend in increasing productivity prior to the arrival of the star. These results

help to rule out the alternate explanation (reverse causality) that stars in our sample move to
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departments because they are on the rise.

Second, we add controls for department- and university-level shocks that may influence both

the hiring of a star and output by controlling for changes in the size, quality, and presence of

a star in another subfield within biology (developmental biology, which is distinct from our

focal subfield of evolutionary biology) as well as two additional unrelated departments at the

focal university: mathematics and psychology. These results help to rule out the alternate

explanation (omitted variable bias) that university- or even department-level shocks that may

be correlated with both the recruiting of a star as well as the productivity of incumbents and

quality of joiners are driving our result.

Third, we employ an instrumental variable analysis based on a count of the number of

stars at other institutions who are at risk of moving to the focal institution in any given

year, which is a function of the star’s career age and work history (based on prior interactions

with researchers from the focal university’s region). This instrument is correlated with the

probability of department i hiring a star in year t but is not correlated with department-level

output. Our main results are robust to each of these extensions. While none of these individual

tests are fully conclusive with respect to identification, together they provide further evidence

that is consistent with our causal interpretation and inconsistent with alternative explanations.

The paper proceeds as follows. In Section 2, we set out the mechanisms through which

incumbent productivity and recruitment externalities might operate in the context of a sim-

ple model with Romer-style local-knowledge production functions. We describe our data in

Section 3 and our empirical strategy in Section 4. We report and interpret our basic difference-

in-differences results in Section 5. In Section 6, we provide further evidence for a causal inter-

pretation. Robustness checks are provided in Section 7 and we conclude with a discussion of

the implications of our findings in Section 8.
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2 A Simple Model

How does the hiring of a star scientist affect the performance of the hiring department? This

section develops a simple model of the effects of hiring a star on both the productivity of

incumbent scientists and the quality of subsequent hires.

2.1 Direct Productivity Effects on Incumbents

We begin with the direct effect of a star hire on the productivity of incumbents, ignoring initially

any potential impacts through a changed composition of subsequent hires. We assume there

are two types of scientists: type-1 and type-2. Type-1 scientists work on topic 1, and type-2

scientists work on topic 2. We further assume that the star is type-1. We measure individual

scientist productivity by the flow of citation-weighted publications. For a given scientist of

type-1, we model productivity by a Romer-style research production function:

Ȧ1ι = δ1iA
θ11
1

Aθ12
2

, (1)

where δ1i is an individual productivity parameter for scientist i, A1 is the total citation-

weighted local knowledge stock of type-1 scientists, A2 is the total citation-weighted local

knowledge stock of type-2 scientists, and θ11 and θ12 are elasticities of individual productivity

with respect to the local knowledge stocks of type-1 and type-2 scientists, respectively. We

assume θ11 > θ12, so that the knowledge spillover effect is greater within than across types. A

similar productivity equation applies to type-2 scientists:

Ȧ2ι = δ2iA
θ21
1

Aθ22
2

, (2)

where θ22 > θ21.

How does the hiring of a star type-1 scientist directly affect the productivity of the two
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scientist types? We assume that the knowledge stock of the star is sA1, where s is the star’s

knowledge stock as a share of the initial type-1 knowledge stock at the institution. Focusing

first on type-1 scientists, the marginal productivity benefit of a one unit increase in the local

knowledge stock of type-1 scientists is:

∂Ȧ1ι

δA1

= θ11δ1iA
θ11−1

1
Aθ12

2
. (3)

We then represent the total impact on the productivity of type-1 scientists by the linear

approximation:

dȦ1ι ≈
∂Ȧ1ι

δA1

dA1 =
∂Ȧ1ι

δA1

sA1. (4)

Using (1) and (3), we can write the proportional effect on type-1 productivity as:

dȦ1i

Ȧ1i

≈ sθ11. (5)

Similarly, we can write the proportional effect on type-2 scientists as:

dȦ2i

Ȧ2i

≈ sθ21. (6)

Thus, the direct productivity effect will be larger for type-1 scientists and also larger for

institutions where the star represents a larger share of the initial type-1 knowledge stock (i.e.,

a large s). Assuming this share tends to rise with the rank of the institution, the direct

proportional productivity effect of the hiring of a star will be larger at lower-ranked institutions.
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2.2 Indirect Productivity Effects on Incumbents through Subse-

quent Hiring

In addition to these direct effects, the productivity of incumbents will also be affected by

any impacts of the hiring of the star on subsequent recruitment. We therefore allow for the

possibility of “recruitment externalities” in addition to the “knowledge spillover externalities”

discussed above. We assume that the department has a fixed number of hiring slots, H (not

including the star). The hiring of a star may change the composition of the applicant pool for

these slots and thus the composition of the subsequent hires. Letting dAH1 be the change in

the knowledge stock of type-1 scientists who are hired due the hiring of the type-1 star and

dAH2 be the change in the knowledge stock of type-2 scientists who are hired due to the type-1

star, the indirect effect on the productivity of type-1 scientists through the hiring channel is:

dȦ1ι ≈
∂Ȧ1ι

δA1

dAH1 +
∂Ȧ1ι

δA2

dAH2. (7)

We can in turn rewrite this in terms of the proportional change in the productivity of type-1

scientists as:

dȦ1i

Ȧ1i

≈ α1θ11 + α2θ12, (8)

where α1 =
dAH1
A1

and α2 =
dAH2
A2

.

Similarly, the proportional indirect effect for type-2 scientists is:

dȦ2i

Ȧ2i

≈ α1θ21 + α2θ22. (9)

We next consider how the hiring of the type-1 star affects the composition of hiring. We

assume the institution hires the best scientists from the applicant pool for its open positions,

where we measure quality by the citation-weighted knowledge stocks of the applicants. To
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solve for the optimal composition of hiring, we introduce the idea of a recruitment function.

For type-1 scientists, the recruitment function gives the quality of the applicant in the jth

position in the quality ranking, where we rank the applicants from best to worst. Letting H1

represent the number of type-1 scientists hired, we give the quality of the marginal hire by:

Aj1 = φ11(1 + s)A1 + φ12A2 − β1H1, (10)

where the parameter β1 measures how the quality of the marginal recruit falls with additional

hires. In Figure 1, we graph from left to right the relationship between the quality of the

marginal hire and the number of hires. Critically, the quality of the existing scientists (including

the star scientist) is a shift factor for the recruitment function. An increase in the quality of

incumbents will shift the recruitment curve upwards in Figure 1. Thus, the initial recruitment

of the star scientist can support the hiring of better quality scientists for the additional available

positions through a recruitment externality. Note that we allow for the possibility that potential

recruits are attracted by the quality of existing scientists of the other type, though we assume

φ11 > φ12. A similar recruitment function applies for type-2 hires:

Aj2 = φ21(1 + s)A1 + φ22A2 − β2H2, (11)

where β2 measures the rate of decline in the quality of the marginal type-2 recruit and φ22 > φ21.

Assuming the institution seeks to maximize the total quality of recruits, the marginal qual-

ity of recruits will be equalized at the optimal composition of hires. We show this optimal

composition in Figure 1. Imposing the condition H1 +H2 = H, we yield the optimal number

of type-1 hires by:

H1 =

�
φ11 − φ21

β1 + β2

�
(1 + s)A1 +

�
φ12 − φ22

β1 + β2

�
A2 +

�
β2

β1 + β2

�
H. (12)

We next identify the change in the number of type-1 hires that results from the hiring of
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the star. From (12), we denote this change by:

dH1 =

�
φ11 − φ21

β1 + β2

�
sA1. (13)

The change in type-1 hires will be positive, provided that φ11 > φ21. This will be the case

if a given improvement in the quality of type-1 scientists has a greater positive impact on the

recruitment of type-1 scientists than type-2 scientists. We assume this condition holds. Using

similar reasoning, we denote the change in type-2 hires by:

dH2 = −
�
φ11 − φ21

β1 + β2

�
sA1. (14)

Thus, the hiring of the type-1 star will also shift the composition of subsequent hires towards

type-1.

We next examine the impact of hiring the star on the average quality of hires. To determine

the impact on average quality, we first note that the total quality of type-1 hires (measured by

the total citation-weighted publications) is:

AH1 =

�
H1

0

Aj1dj1

= φ11(1 + s)A1H1 + φ12A2H1 −
β1

2
H2

1
.

(15)

We then represent the average quality of type-1 hires by:

AH1

H1

= φ11(1 + s)A1 + φ12A2 −
B1

2
H1. (16)

The change in the average quality due to the hiring of the star is:

d

�
AH1

H1

�
=

�
φ11 −

β1

2

�
φ11 − φ21

β1 + β2

��
sA1

=

�
(φ11 + φ21)β1 + 2φ11β2

2(β1 + β2)

�
sA1 > 0.

(17)
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Therefore, the average quality of type-1 hires rises as a result of hiring the type-1 star. The

average quality of type-2 hires also rises as a result of hiring the type-1 star. This is the result

of both an upward shift in the recruitment function for type-2 scientists and a move along the

curve due to the reduced hiring of these scientists.

d

�
AH2

H2

�
=

�
φ21 −

β2

2

�
φ11 − φ21

β1 + β2

��
sA1

=

�
(φ11 + φ21)β2 + 2φ21β1

2(β1 + β2)

�
sA1 > 0.

(18)

What then is the overall indirect effect on the productivity of incumbents due to a changed

composition of hiring compared to the case where no star is hired? For type-1 scientists,

the effect on the local type-1 knowledge stock is positive. This positive effect comes through

more type-1 scientists being hired and a higher average quality of those scientists. For type-1

scientists, the effect on the local type-2 knowledge stock is ambiguous: fewer type-2 scientists

are hired but they are of higher average quality. However, given that the marginal productivity

benefit for type-1 scientists of co-located type-1 scientists is greater than for type-2, these

scientists will benefit from any shift in composition towards type-1. Overall, the indirect effect

through hiring will be positive for type-1 scientists, which reinforces the direct productivity

effect.

The overall indirect productivity effect is ambiguous for incumbent type-2 scientists. Pro-

ductivity is enhanced as a result of more and higher-quality type-1 scientists being hired.

However, they may lose from a possible negative effect on the total quality of type-2 hires,

which will depend on the balance between fewer hires and a higher average quality of those

hires. If the impact of fewer type-2 hires dominates, then it is possible that the overall indirect

effect on the productivity of type-2 incumbents could be negative.
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2.3 Summary of Testable Propositions

The model yields a number of testable propositions:

• A type-1 star hire will increase the productivity of type-1 incumbents. This is the result

of a positive direct productivity effect from the star and a positive indirect effect through

a star-related reputation effect on hiring.

• A type-1 star hire has an ambiguous effect on the productivity of type-2 incumbents. This

is the result of a positive productivity direct effect and an ambiguous indirect productivity

effect.

• Hiring a type-1 star will increase the average quality of type-1 and type-2 hires relative to

the no-star-hire baseline.

• The productivity effects will be larger at lower-ranked institutions; that is, the productivity

effects are increasing in s, the star’s citation weighted knowledge stock expressed as a share

of the initial type-1 knowledge stock.

3 Empirical Setting and Data

Our study focuses on the field of evolutionary biology, a sub-field of biology concerned with

the processes that generate diversity of life on earth (e.g., the origin of species). Research in

evolutionary biology consists of both theoretical and experimental contributions. While exper-

imental evolutionary biology can be capital intensive due to the costs of running experiments

in a lab, productivity within the discipline is not predicated on access to very specific facilities,

as is the case in experimental particle physics and empirical astronomy. Evolutionary biology’s

mix of theoretical and experimental research activities makes it a good test subject for an initial

exploration of the star effect on department growth.
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3.1 Defining Evolutionary Biology

We use bibliometric data from the ISI Web of Science to calculate output at the department

level and to identify the locations of evolutionary biologists. A critical first step is to define the

field of evolutionary biology. We impute department membership using the following approach:

• We collect data on all articles published in the four main society journals of evolutionary

biology: Evolution, Systematic Biology, Molecular Biology and Evolution, and Journal of

Evolutionary Biology. We focus on these four society journals since every article published

here concerns evolutionary biology and is relevant to evolutionary biologists. This yields

15,256 articles.

• We next collect all 149,947 articles that are referenced at least once by these 15,526 society

journal articles. We call this set the corpus of influence since all of these referenced articles

have had some impact on an evolutionary biology article. These 149,946 will serve as the

basis of evolutionary biology knowledge for the purposes of our study.

• We then weight this corpus of influence by how many times each article has been cited

by an article published in the set of 15,256 evolutionary biology society journal articles

within five years of publication. There are 501,952 references from the 15,256 society

journal articles to the 149,946 corpus of influence articles. We use the 501,952 references

to construct our citation-weighted publication measure.

The key benefit of this approach, as opposed to simply using the ISI Journal Citation reports

field definitions, is that it allows us to include general journals that evolutionary biologists are

likely to publish in, such as Science, Nature, and Cell (among others).

3.2 Identifying Authors

We next attempt to attribute the 149,946 articles in the corpus of influence to individual

authors. One problem with the ISI Web of Science data is that until recently it listed only
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the first initial, a middle initial (if present), and the last name for each author. Since our

empirical objective is to trace the movement of evolutionary biologists across departments, it

is first necessary to disambiguate authors (that is, to distinguish J Smith from JA Smith). We

rely on heuristics developed by Tang and Walsh (2010) to disambiguate between authors who

share the same name. The heuristic considers backward citations of two focal papers. If two

papers reference similar papers (weighted by how many times the paper has been cited, i.e.,

how obscure or popular it is), then the likelihood of the papers belonging to the same author

increases, and we link the two papers to the same author. We repeat this process for all papers

with authors who have the same first initial and last name. We exclude scientists who do not

have more than two publications linked to their name.

3.3 Identifying Scientist Locations

Using the generated unique author identifiers for each evolutionary biology paper, we next

attribute each scientist to a particular institution for every year they are active. A scientist

is active from the year they publish their first paper to the year they publish their last paper.

Here again, we must overcome a data deficiency inherent within the ISI Web of Science data.

Until recently, the Web of Science did not link institutions listed on an article to the authors.

Instead, we impute author location using reprint information that provides a one-to-one map-

ping between the reprint author and the scientist’s affiliation. In addition, we take advantage

of the fact that almost 57% of evolutionary biology papers are produced with only a single

institution listing. We thus are able to directly attribute the location of all authors on these

papers to the focal institution.

We note that this method of location attribution is more effective within evolutionary

biology than many other science disciplines since article production within evolutionary biology

is not characterized by large teams (2.55 average authors per paper).

17



3.4 Unit of Analysis

Our unit of analysis is the department-year. We include all evolutionary biology departments

that had at least one scientist present in 1980 and at least one scientist present in 2008. This

criterion ensures that we are not simply counting new entrants or other idiosyncratic details

of the data. Furthermore, this ensures that for any given department-year, a department is at

risk of hiring a star scientist. Two-hundred-fifty-five departments fit this criterion. As such,

we have 7,395 department-year observations.

3.5 Dependent Variables

We use three key dependent variables: 1) Outputit: the sum of the citation-weighted papers

published by scientists present at department i in year t; 2) IncumbentOutputit: the sum of

the citation-weighted papers published by scientists present the year prior to the star’s arrival

at department i in year t; and 3) JoinerQualityit: the mean citation-weighted stock of papers

published up until year t− 1 of all scientists who join department i in year t.

We only use citations from articles published in the four evolutionary biology society jour-

nals that are made within five years of the focal paper’s publication. In the majority of our

specifications, we also exclude the publications of the arriving star.

3.6 Independent Variables

Our key independent variable is Starit−1, which equals 1 if the year is greater than or equal to

the year a star scientist (above the 90th percentile of citation-weighted stock of papers published

up until year t − 1) joins department i and 0 otherwise. To ensure we observe adequate pre-

treatment observations, we only examine the arrival of stars starting in 1985. Furthermore, we

only examine the impact of the first arrival of a star. We provide a histogram of the variation

in year of first star arrival in Figure2. As the figure illustrates, the timing of first star arrival

18



varies significantly across institutions with approximately two thirds of the universities that

recruit a star doing so during the first 10 years (1985-1995) and the remainder doing so in the

second ten years (1995-2005).

3.7 Descriptive Statistics

We provide summary statistics of our dataset in Table 1. The average department in our

sample produces just over 80 citation-weighted publications per year. When we exclude the

contributions of the star, this number is reduced to just under 77 citation-weighted publications

per year. While it initially may appear that the star is not contributing much to the depart-

ment, we should note that this is the mean across all department-years and as such includes

departments that never receive a star as well as the output of departments prior to the arrival

of a star. Just under 22 scientists are active in each department in a given year on average,

and incumbent scientists produce fewer than 18 citation-weighted publications a year.

4 Empirical Strategy

We examine the relationship between the arrival of a star scientist and the subsequent output

of the department. The main empirical model we estimate is:

E[Yit] = exp(α ∗ Starit−1 + β ∗ Scientistsit + δt + µi), (19)

where Yit is one of our three dependent variables. As previously mentioned, we remove the

arriving stars contributions to Yit in most specifications.

Of the 255 departments, 178 are treated (receive a star). The untreated departments act

as control departments, allowing us to perform a difference-in-differences type estimation. The

traditional post-treatment and treated cross-sectional unit coefficients are subsumed by the
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time dummies (δt) and department fixed effects (µi), respectively. Since the dependent variable

is a count variable, we estimate our key specification using poisson quasi maximum-likelihood

methods and adopt “Wooldridge” robust standard errors clustered at the department-level,

which allows for arbitrary serial correlation Wooldridge (1999).

We also estimate our main specification with a full set of leading and lagging indicators of

the star arrival variable in the following form:

E[Yit] = exp(α−10Starit−10 + α−9Starit−9 + ...+ α−2Starit−2

+ α0Starit + ...+ α8Starit+8 + βScientistsit + δt + µi).
(20)

The leading indicators help discern the extent to which reverse-causality influences our

coefficients; that is, whether changes in department output influence the likelihood of recruiting

a star. In addition, the lagged indicators allow us to explore temporal dynamics, in particular

the duration of the star effect.

5 Difference-in-Differences Results

5.1 Department Output Increases after the Arrival of a Star

We begin by examining the relationship between the arrival of a star and the productivity of

the department. The estimated coefficient on Star (Table 2, Column 1) implies that after a

star arrives, department-level output increases by 53.7%, on average, per year (exp(0.430)-1

= 0.537). This is not surprising since the department now has a star who, by definition, is

prolific. However, even after we remove the star’s contribution, we still find a department-level

increase in output of 48% per year on average (Column 2).

Recognizing that recruiting a star may coincide with an overall expansion of the department,
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we add a control for the number of scientists present in the department in the focal year. The

estimated coefficient on Star indicates that a department’s productivity (output per scientist)

increases by 38%, on average, after the arrival of a star, still excluding the star’s contribution to

department output (Column 3). This estimate is both economically and statistically significant

(1% level).

We next distinguish between incumbent scientists, who are in the department before the star

arrives, and subsequent recruits (“joiners”). We begin by focusing on incumbents. Specifically,

we drop joiners from the sample and estimate the prior equation based solely on incumbent

data, controlling for the number of incumbents (as defined by their presence the year prior to

the star’s arrival) present in year t. The arrival of a star does not seem to have an economically

or statistically significant relationship with incumbent output (Column 4). Since we define

incumbents as scientists present the year prior to a star’s arrival, we are only able to examine

changes to incumbent output for departments that are “treated” by recruiting a star.

5.2 Star Effect on Joiner Quality

We turn next to examining joiners. We are not able to estimate joiner output the way we do

for incumbents since by construction joiners have no output at the focal department prior to

their arrival. Therefore, it is impossible to estimate a change in joiner productivity between

the periods pre- and post-arrival of the star using our prior approach. However, we are able to

observe variation in the quality of joiners before versus after the arrival of a star. To do this,

we calculate the mean annual citation-weighted stock of papers published during the period

prior to t0−1 for each scientist joining department i in year t. Significant variation exists in

the quality of joining cohorts (mean = 37, standard dev. = 78, min. = 1, max = 2348, Table

1). Thus, we estimate the relationship between joiner quality (dependent variable) and the

presence of a star (Table 3). As before, we use the department as the unit of analysis and

employ both department and year fixed effects. The estimated coefficient on star indicates that
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after the arrival of a star, the mean quality of joining scientists increases by more than 70%

(Column 1).

Next, we examine whether this boost in joiner quality applies across all levels of recruits

(rookie, mid-career, senior). A number of studies document variation in productivity of scien-

tists over their professional lifecycle (Lillard and Weiss, 1978; Levin and Stephan, 1991; Jones,

2010). Furthermore, Weinberg (2006) reports evidence that the extent to which a researcher

is influenced by their co-located peers varies with age. To explore this issue in our setting in

terms of how star impact on the quality of joiners varies with joiner vintage, we split the sample

according to career age: 1) early-career (up to 10 years of publishing experience), 2) mid-career

(10-20 years), and 3) late-career (more than 20 years). We report results in Columns 2, 3, and

4. The largest increase in quality appears to come from mid-career joiners, although the point

estimates are not statistically distinguishable from those of early- and late-career.

5.3 Star Effect on Related Incumbents

We further dissect our main result by examining the difference between scientists who are

working on topics related to the star versus those who are not. We classify a scientist as related

if they cite at least one of the star’s papers in any year prior to t0−1 and unrelated otherwise.

We split the sample accordingly. On average, 9% of incumbents and an equal fraction of joiners

(9%) are related to the star. We find that the portion of the department that does research in

areas related to that of the star experiences a significantly greater increase in output than the

unrelated portion (Table 4, Column 1 versus 3). In fact, after the arrival of a star, the output

of related scientists increases by more than 150% compared to 21% for unrelated.

In contrast to our earlier “no effect” result on incumbents, we find that incumbents who

are related increase their productivity by 68% on average (Column 2). This result is hidden in

the aggregate result reported earlier concerning incumbents since related incumbents represent

a small fraction of overall incumbents (9%). Furthermore, the arrival of a star may adversely
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affect the level of resources allocated to unrelated incumbents, shifting resources from unrelated

to related areas (e.g., future hires, department funds), which may result in a decrease in their

productivity. The negative, albeit insignificant at conventional levels, point estimate may reflect

that (Column 4). The negative effect on unrelated incumbents counteracts the positive effect

on related incumbents such that, in the aggregate, the overall effect on incumbents is neutral,

as reported above (Table 2, Column 4) and consistent with the aggregate findings reported in

Waldinger (2012).

5.4 Star Effect on Related Joiners

We combine our analyses on joiner quality and relatedness in the analysis we report in Table

5. We classify joiners as related or unrelated following the procedure described above. We

split the sample according to relatedness and, following the procedure described in Section 5.2

above, we estimate the relationship between joiner quality and the presence of a star. Although

the quality of both types of joiners increases after the arrival of the star, the increase is much

greater for joiners who work in related areas of research: 434% compared to 48% (Columns 1

and 2, respectively). Still, it is interesting to note that the quality of unrelated joiners increases

after the arrival of a star, in contrast to the productivity of unrelated incumbents, which does

not increase.

5.5 Department Rank

Next, we examine the extent to which the star effect on department-level productivity is in-

fluenced by the rank of the institution. In Table 6, we report the point estimates of Starit−1

for regressions using our three main dependent variables (Output w/o Star, Incumbent Output,

and Joiner Quality) split by institutions in the top 25 at the time of the star’s arrival versus

not-top 25. The rank splits reveal large heterogeneity in effects across institution types. Top
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departments experience less of a gain after star arrival of their first star compared to institu-

tions outside of the top 25. These results are robust to different cutoffs for top institutions

(e.g., top 10, top 50).

5.6 Collaboration

Next, we examine the extent to which star engagement with their new colleagues is associ-

ated with the observed department-level productivity gains. We employ co-production of new

knowledge (i.e., coauthorship) as a proxy measure for star engagement. We report the results

in Table 7. First, we focus on the sample that includes all scientists (Columns 1-3). The

variable Collaborations w/Star is a count of the number of collaborations between the star and

a colleague in the same department. An additional collaboration with the star is associated

with a 3.1% increase in overall department-level productivity. The effect is approximately 50%

greater when we focus only on related peers (4.5%). Star engagement is not correlated with

the productivity of unrelated peers.

Although star collaboration accounts for some of the variation in department-level produc-

tivity (as compared to the point estimates in Table 2, Column 3 and Table 4, Column 1) it does

not fully account for the increase in productivity after the star’s arrival. While co-production

between stars and their department peers is important, it does not fully explain the productiv-

ity increase post-star arrival. That said, collaboration is only one channel through which stars

may engage with their peers. However, star collaboration does seem to account for all of the

productivity boost for incumbents (Columns 4-6). As with the results we report in Columns 1

through 3, more star collaboration is associated with a greater increase in incumbent produc-

tivity, but in contrast to Columns 1 through 3, in Columns 4 through 6 the inclusion of the

collaboration variable causes the main effect of the star’s arrival to disappear. This stands in

stark contrast to the large and statistically significant effect from the arrival of a star on related

incumbent productivity that we report in Table 4, Column 2.
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6 Is the Estimated Star Effect Causal?

The previous section has documented an economically and statistically significant star effect

on department productivity (excluding the output of the star), related incumbent productivity,

and post-star joiner quality. However, the suspicion remains that these effects might not reflect

the causal impact of the star. Star recruitment might just be a manifestation of a broader

strategy to improve department size and quality (omitted variable bias). Moreover, the suc-

cessful recruitment of the star might itself be the result of independently improving department

performance. We adopt a three-strand approach to further support a causal interpretation of

the Section 5 results.

First, we use spline regressions and associated graphics to examine pre-trends in produc-

tivity and joiner quality. This allows us to examine whether the improvement in performance

pre-dates the arrival of the star. The absence of a pre-trend would help rule out a broader

department-improvement strategy or reverse causality from performance to star recruitment.

Second, we add controls for department- and university-level shocks that might influence both

the hiring of a star and output. We add controls for changes in the size, quality, and presence

of a star in another subfield within biology (developmental biology, which is distinct from our

focal subfield of evolutionary biology) as well as two additional unrelated departments at the

focal university: mathematics and psychology. Third, we introduce an instrument for star re-

cruitment based on a time-varying measure of move risk for stars in evolutionary biology who

have a well-defined pre-existing connection with the focal department.

6.1 Spline Regressions and Pre-Trends

It is plausible that departments are better able to recruit a star because their output is increas-

ing or that the recruitment of the star reflects a pre-existing department-improvement strategy.

To explore this possibility, we estimate regressions that include a full set of leading and lagging
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indicators for the star variable in line with the specification outlined in Equation 20.

We present the results for department output in graphical form in Panel A of Figure 3.

Department-level output remains reasonably constant in the years leading up to recruiting the

star. Specifically, output in years t−10 to t−2 is statistically indistinguishable from output in

the year prior to the star’s arrival (t−1), the omitted category. The bars correspond to 95%

confidence intervals. Output increases sharply the year of the star’s arrival relative to t−1.

Thus, we find no evidence of a pre-trend. In other words, stars do not appear to be moving in

order to join departments “on the rise.”

We then repeat this estimation on the sample that drops the contributions of the arriving

star in Panel B of Figure 3. Thus, this sample includes only incumbents and joiners. Once

again, we find no evidence of an uptick in department-level output in the years leading up

to the arrival of the star. Furthermore, with this sample, we do not observe an increase in

post-arrival output until two years after the star’s arrival, likely since this is driven by new

recruits who may be more likely to join due to the presence of the star. Moreover, the increase

in output relative to t−1 persists for the full period for which we have data (up to t8).

Next, we repeat this estimate on the sample that drops the contributions of both the star

and joiners, such that only incumbent data remains. This corresponds to the regression results

we report in Table 2, Column 4. We find no evidence of a change in the output of incumbents

either in the years leading up to the arrival of the star or in the years following the star’s arrival

(Figure 4).

Turning to the joiner quality findings, the spline regression reveals that joiner quality is not

rising prior to the arrival of a star. We find no discernible evidence of a pre-trend (Figure 5).

However, the average quality of joiners increases significantly and almost immediately after a

star is hired. This suggests that much of the observed increase in department-level output is

attributable to an increase in the quality of recruits following the star’s arrival.

Figures 6 and 7 each show separate splines for related and unrelated scientists. Figure 6
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shows the pre- and post-arrival productivity effects excluding the star but including joiners.

Figure 7 shows these same effects for incumbents only. We observe no pre-trends.

6.2 Additional Department and University Controls

In Table 7, we control for department- and university-level shocks that may influence both the

hiring of a star and department-level output. We do this by controlling for the presence of a star

and the department size at the focal institution’s developmental biology, mathematics, and psy-

chology departments. We construct our developmental biology sample in a similar fashion to the

one outlined in Section 3.1 by drawing upon all articles cited at least once in the following main

developmental biology journals: Development, italDevelopmental Biology, Developmental Cell,

and italGenes & Development. We construct our mathematics and psychology departments

by drawing upon all articles published in journals classified as “Mathematics” or “Psychology”

in the ISI Journal Citation Reports. Controlling for these effects only slightly diminishes the

magnitude of the reported effects.

6.3 An Instrument for Star Recruitment

The splines and controls help to rule out pre-existing strategies to improve evolutionary biology

department performance and strategies that coincide with the recruitment of the star that are

also present in other biology disciplines and the wider university. However, the recruitment of

the star might still be coincident with a new strategy of department improvement that is specific

to evolutionary biology. This suggests the use of an instrument for star recruitment that is

plausibly uncorrelated with any change in departmental strategy. Our instrument, MoveRisk,

is a dummy set to 1 if the cumulative count of the number of star scientists (90th percentile)

who are at risk of moving in year t to department i is above the median level across all years

and institutions, and 0 otherwise.3

3The median number of stars at risk of moving is 14.

27



Our instrumental-variable strategy relies on within-department analysis; consequently, we

require a time-varying instrument. The instrument consists of two components: 1) the timing

of a move, and 2) the choice of destination. We model the timing of a move on the exogenous

increase in career age. As can be seen from the plot overlays in Figure 8, a scientist has the

highest probability of moving between the career ages (years since first publication) of 5 and

10. The red line (y) plots the results from Table 9, Column 1.

In Table 10 we present results from a location choice regression, where the decision of

scientist j to move to department i is a function of a dummy if the scientist has any coauthors

(prior to move) which are at the focal department and a dummy if the scientist has worked

at a department in the same state as the focal department (if in the US) or if the scientist

has worked at a department in the same country as the focal department (if not in the US).

The results in Table 10 show that all three factors positively correlate with the probability of

moving to the focal department. An f-test of excluded instruments indicates that we do not

have a weak instrument problem.

The instrument MoveRisk is the cumulative count of scientists who have coauthors at

the focal department and have either been at a department in the same state as the focal

department (if in the US) or in the same country as the focal department (if outside of the

US) and who have a career age between 5 and 10. The instrument is cumulative since our

endogenous variable is a dummy that stays “on” once treatment has occurred.

Table 11 presents the two-stage least squares (2SLS) estimates instrumenting the arrival

of a 90th percentile star with MoveRisk. Column 1 presents the results of the first-stage

regression regressing StarArrival on the instrument, MoveRisk. The excluded instrument is

both economically and statistically meaningful: when there are more than 14 scientists (above

the median number of risk) at risk of moving to institution i in year t, institution i is 10%

more likely to hire a star. As can be seen in the remainder of the specifications (Columns 2-5),
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the point estimates are qualitatively similar to those generated in earlier tables.4 The point

estimates are larger, but the differences are not statistically significant.

Table 12 presents instrumental variables (IV) results for our analysis of department-level

output, incumbent output, and joiner quality by the scientist’s topic-relatedness to the star.

Once again, the IV results provide results qualitatively in line with the poisson results previously

presented: the arrival of a star positively increases a department’s output, incumbents’ output,

and joiner quality for scientists who work in related areas, does not increase output of aggregate

department output, and decreases incumbent output of those working in unrelated areas but

still increases joiner quality for scientists working in unrelated topic areas.

7 Additional Robustness Checks

We next conduct three additional robustness tests for our main results. We first examine the

effect of star departures (rather than star arrivals). We report the results for our three main

dependent variables in Table 13. Not surprisingly, star departures are associated with a decline

in department output, even after excluding the output of the star. Perhaps more surprisingly,

the negative effect on incumbent productivity of star departures is larger in magnitude than

the positive effect of star arrival. A possible explanation is that departing stars have developed

relationships with incumbents (e.g., collaborations, mentoring, or simply knowledge exchange)

leading to adverse impacts on the productivity of those left behind. As Agrawal et al. (2006)

emphasize, relationship capital built during periods of co-location endures, at least in part, post

separation. Nonetheless, prior co-location is likely to be less effective in supporting incumbent

productivity than current co-location. The final column in Table 13 shows a positive effect of

star departure on the quality of subsequent hires, although the coefficient is not statistically

significant at conventional levels. The positive coefficient may reflect the freeing up of resources

4We log transform the dependent variables (ln+1) to allow for easier comparison with the log-linear poisson model we
present throughout.
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as a result of the star departure. However, another possibility is suggested by the model in

Section 2. In the model, the positive effect of a star arrival comes partly through the effect

on subsequent hiring. These effects tend to be positively reinforcing, as successful recruitment

supports further successful recruitment. The positive effect of star departure may reflect this

dynamic to the extent that star departure is correlated with prior star arrival in our data.

Second, we examine the robustness of our results to an alternative method of identifying

stars (Table 14). Rather than identifying stars based on their ranking in the distribution of

citation-weighted cumulative output, we do so based on their membership in the National

Academy of Sciences (NAS). This advantage of this method is that it is not directly related to

any measures of output that we use as dependent variables in our regressions. One disadvantage

is that it reduces the number of observed star arrivals in our data from 178 to 31 scientists. We

find that the arrival of an NAS scientist has no statistically significant impact on the output of

the institution or on subsequent joiner quality but is associated with a decrease in the output

of incumbents. To check whether the arrival of a NAS scientist has a greater impact on lower-

ranked departments, we next interact our arrival variable with department ranking dummies.

We report estimated coefficients on indicator variables for the arrival of a NAS scientists at

a Top 25 and not-Top 25 institution in Table 15. The results indicate that the arrival of

NAS scientist at a Top 25 institution diminishes incumbent productivity and has no effect on

subsequent joiner quality while the arrival of a NAS scientist at a lower ranked institution has

no effect on incumbent productivity but increases the quality of subsequent joiners.

Third, we examine the effect of an incumbent scientist being elected to the National

Academy of Sciences (Table 16 ). Comparing these results with our prior results allows us

to distinguish between a physical move and a change in status. The change in status could

have an effect on the quality of subsequent recruitment due to reputation effects. However, we

do not observe statistically significant associations for any of our three dependent variables.

Separating the relationship between an incumbent’s election to the National Academy of Sci-
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ences by department tier once again reveals heterogeneity in outcomes. Table 17 shows that

irrespective of department rank, the election of an incumbent scientist to the National Academy

of Sciences is unrelated to changes in incumbent output and subsequent joiner quality. On the

other hand, non-Top 25 departments with an incumbent that becomes a member of the Na-

tional Academy of Science experience an increase in output net of the scientist’s own output.

These results suggest that the reputations of stars that are elected to the National Academy

are already established prior to their election. We did not have a strong prior on how election

to the National Academy would affect incumbents. On the one hand, the election could help

the star access funding or improve publication prospects, with positive spillovers to incumbent

colleagues. On the other hand, the election could create additional external demands on the

time of the star, reducing their capacity to support the productivity of their departmental

colleagues.

8 Discussion and Conclusion

We explore how the hiring of a star scientist affects incumbent productivity and the quality of

subsequent recruitment. We find that the effects of star location are economically significant

but subtle. To illuminate the causal channels, we apply a simple model that allows for both

differentiated knowledge and recruitment spillovers. We base differentiation on the relatedness

of work of the star to incumbents and potential joiners. The model’s prediction that related

incumbents should benefit from a star hire is strongly supported in the data, with the effect

being strongest where there is evidence of actual collaboration by the star with incumbents.

For unrelated incumbents, the model shows how a star hire can actually harm incumbent

productivity through hiring composition effects, despite positive direct knowledge spillovers.

Empirically, we find evidence of modest negative adverse impacts, which also explains the

failure to find evidence of productivity effects for incumbents in the aggregate. The model’s
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prediction that a star will improve the quality of both related and unrelated joiners also finds

strong support in the data. Finally, we also uncover evidence to support the model’s prediction

of larger proportional productivity and recruitment effects in lower-ranked institutions.

The main empirical challenge is to demonstrate that the observed star-related associations

are at least in part causal. We adopt a three-part approach to support a causal interpreta-

tion: an examination of pre-trends (to rule out a pre-existing department-improvement trend),

controls for university- and department-level shocks (e.g., surge in resources), and use of an

instrument that is correlated with star recruitment but plausibly uncorrelated with broader

department improvement strategies. While none of these approaches provides perfectly clean

identification on its own, together they give evidence that is consistent with a casual explanation

of the observed star effects and inconsistent with the plausible alternative explanations.

What are possible normative implications of our findings on why stars matter? In general,

our findings on the impact of stars on colleague productivity and the dynamics of recruitment

suggest that the location decisions of stars are important for the efficient organization of science.

The evidence that highly productive scientists are drawn to one another for reputational as well

as productivity reasons raises a concern that there may be excessive positive sorting of scientists

from an efficiency perspective at top-ranked institutions.

Such sorting might lead to missed opportunities for the development of strong clusters

of related scientists to form around a star at less highly-ranked institutions. On the other

hand, certain such institutions should have a strong incentive to pursue star-focused strategies

to ascend the rankings. Our findings suggest that star-recruitment strategies may be most

effective where a cadre of related incumbents is already present and the department has a flow

of new hiring slots sufficient to take advantage of the improved quality of potential new recruits.

Our findings thus have possible lessens for public/private funding and endowment strategies

for seeding dynamic research clusters.

As noted in the introduction, the efficient spatial distribution of scientists is also likely to
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shift with increased incentives for collaboration on one side and reduced costs of distance-related

communication on the other. Although a university department is a rather special local knowl-

edge economy, our findings on the relative importance of knowledge- and recruitment-related

externalities is also suggestive of a broader role of “stars” – scientists, CEOs, entrepreneurs,

and the like – in the dynamics of local agglomeration and growth. We plan to further probe

these potential social welfare implications in future research.
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Figure 1: Impact of a Type-1 Star Hire on Subsequent Recruitment

Figure 2: Number of Departments that Recruit their First Star (by year)
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Notes: The above histogram displays the year in which departments recruit their first star.
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Figure 4: Department Output – Incumbents Only
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Notes: This figure plots point estimates for leading and lagging indicators for the arrival of a department’s first star. The figure plots the point

estimates of the following specification:

E[Yit] = exp(α−10 Starit−10 + α−9 Starit−9 + . . .+ α−2Starit−2 + α0Starit + . . .+ α8Starit+8 + βIncumbentsit + δt + µi). E[Yit] is the

incumbent output of department i in year t. Starit−10 is set to 1 for years up to and including 10 years prior to the arrival of the star and 0

otherwise. Starit+8 is set to 1 for all years eight years after the arrival of the star and 0 otherwise. Incumbentsit controls for the number of

incumbents present in year t at department i. We define incumbents as scientists who are present in department i the year prior to the star’s

arrival. The omitted category is one year prior to the star’s arrival. The vertical bars correspond to 95% confidence intervals with

department-clustered standard errors.
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Figure 5: Joiner Quality
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Notes: This figure plots point estimates for leading and lagging indicators for the arrival of a department’s first star. The figure plots the point

estimates of the following specification: E[Yit] = exp(α−10 Starit−10+α−9 Starit−9+ . . .+α−2Starit−2+α0Starit+ . . .+α8Starit+8+ δt+µi).

E[Yit] is the mean quality of scientists who join department i in year t. Starit−10 is set to 1 for years up to and including 10 years prior to the

arrival of the star and 0 otherwise. Starit+8 is set to 1 for all years eight years after the arrival of the star and 0 otherwise. The omitted category

is one year prior to the star’s arrival. The vertical bars correspond to 95% confidence intervals with department-clustered standard errors.
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Figure 8: Kernel Density of Move Age and Fifth Order Age Polynomial Plot of Coefficients from Move
Regression in Table 9
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Table 1: Summary Statistics; N = 7,395

Variables Mean Median Std. Dev. Min. Max.

Output 80.90 26 155.32 0 2500

Output w/o Star 76.75 24 151.60 0 2498

Scientists 21.67 14 24.23 1 175

Incumbent Output 17.61 2 53.83 0 1650

Incumbents 6.60 3 9.88 0 93

Star 0.43 0 0.49 0 1

Joiner Quality 36.53 14 78.34 1 2348

Joiner Quality - Early Career 27.97 11.5 56.16 1 1137

Joiner Quality - Mid Career 72.15 19 163.79 1 2925

Joiner Quality - Late Career 108.65 23 296.53 1 3242

Output w/o Star - Related 14.62 0 49.89 0 1687

Output w/o Star - Unrelated 62.13 20 127.91 0 2498

Incumbent Output - Related 3.93 0 18.61 0 719

Incumbent Output - Unrelated 13.68 1 48.96 0 1650

Joiner Quality - Related 21.21 0 94.29 0 1766

Joiner Quality - Unrelated 29.71 0 73.26 0 2348

MoveRisk 51.15 26 67.67 0 589
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Table 2: Main Results
(1) (2) (3) (4)

Dependent Variable: Output Output w/o Star Output w/o Star Incumbent Output

Start−1 0.430∗∗ 0.392∗∗ 0.324∗∗ −0.013
(0.077) (0.082) (0.097) (0.092)

Scientists 0.011∗∗

(0.004)

Incumbents 0.042∗∗

(0.007)

Department Fixed Effects � � � �
Year Fixed Effects � � � �
Observations 7140 7140 7140 4984
Number of Departments 255 255 255 178
Log-Likelihood -155577 -151447 -146349 -55496
Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output refers to Citation-Weighted Publications. Columns 2 and 3 remove the Output of the arriving star. Incumbent Output is a count of

the Citation-Weighted Publication of all scientists at department i who were present the year prior to the star’s arrival. The independent variable

Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise. The two control variables Scientists and

Incumbents are a count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the

year prior to the star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in

parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 3: Characteristics of Joining Scientists

(1) (2) (3) (4)
Dependent Variable: Joiner Quality Joiner Quality Joiner Quality Joiner Quality
Sample: Early Career Mid Career Late Career

Start−1 0.541∗∗ 0.678∗∗ 1.044∗∗ 0.853+

(0.124) (0.132) (0.260) (0.467)

Department Fixed Effects � � � �
Year Fixed Effects � � � �
Observations 3629 3051 1539 735
Number of Departments 250 244 215 155
Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Joiner Quality is the mean stock of all scientists hired by department i in year t. The dependent variables in Columns 2, 3, and 4 are the

mean stock of all scientists hired by department i in year t who have a career age of less than 10, between 10 and 20, and more than 20,

respectively. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise.

Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01

Table 4: Output by Topically Related and Unrelated Scientists

(1) (2) (3) (4)
Dependent Variable: Output w/o Star
Sample: All Incumbents All Incumbents

SubSample: Related Unrelated

Start−1 0.924∗∗ 0.529∗∗ 0.191+ −0.143
(0.240) (0.182) (0.107) (0.107)

Scientists 0.015∗ 0.010∗

(0.007) (0.004)

Incumbents 0.031∗ 0.042∗∗

(0.013) (0.007)

Department Fixed Effects � � � �
Year Fixed Effects � � � �
Observations 4704 3472 7140 4984
Number of Departments 168 124 255 178
Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. The dependent variable, Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by

the characteristics of the scientist. Columns 1-2 only include scientists who are topically related to the arriving star (make at least one reference

in their papers to the arriving star), while Columns 3-4 only include scientists who are topically unrelated to the star (do not make any references

to the papers of the arriving star). Columns 1 and 3 include all scientists, and Columns 2 and 4 include all incumbents present the year prior to

the star’s arrival. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0

otherwise. The two control variables Scientists and Incumbents are a count of the number of scientists present at department i in year t and the

number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t, respectively.

Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 5: Joiner Quality by Topically Related and Unrelated

(1) (2)
Dependent Variable: Joiner Quality
SubSample: Related Unrelated

Start−1 1.676∗∗ 0.390∗∗

(0.378) (0.120)

Department Fixed Effects � �
Year Fixed Effects � �
Observations 2663 3629
Number of Departments 151 250
Notes: This table reports coefficients for two Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Joiner Quality is the mean stock of all scientists hired by department i in year t. The Related subsample consists of scientists who are

topically related to the arriving star (make at least one reference in their papers to the arriving star) and the Unrelated subsample consists of

scientists who are not topically related to the arriving star (do not make any references to the papers of the arriving star). The independent

variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise. Robust standard errors clustered

at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 8: Main Results with Developmental Biology Controls

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Start−1 0.294∗∗ 0.030 0.518∗∗

(0.072) (0.084) (0.123)

Scientists 0.016∗∗

(0.004)

Incumbents 0.039∗∗

(0.006)

Devel. Biology Start−1 −0.134 −0.158 0.069
(0.091) (0.138) (0.177)

Devel. Biology Scientistst−1 −0.003∗ −0.002+ −0.001
(0.001) (0.001) (0.001)

Department Fixed Effects � � �
Year Fixed Effects � � �
Math and Psychology Controls � � �
Observations 7140 4984 3629
Number of Departments 255 178 250
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output refers to Citation-Weighted Publications. Columns 2 and 3 remove the output of the arriving star. Incumbent Output is a count of

the Citation-Weighted Publication of all scientists at department i who are present the year prior to the star’s arrival. The independent variable

Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival, and 0 otherwise. There are four control variables.

Scientists and Incumbents are a count of the number of scientists present at department i in year t and the number of incumbent scientists (who

are present the year prior to the star’s arrival) who are present at department i in year t, respectively. Development Star is a value of 1 if the

year is greater than or equal to the year of a developmental biology star arriving at institution i and 0 otherwise. Development Scientists is a

count of the number of developmental biology scientists present at institution i in year t. All specifications include controls for the arrival of a

star and the number of scientists in the focal department’s Math and Psychology departments. Robust standard errors clustered at the

department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 9: IV - Mobility as a Function of Age

(1) (2) (3) (4)
Dependent Variable: Move Move Move Move
Estimation OLS Logit OLS Logit

Age 0.017∗∗ 0.655∗∗ 0.019∗∗ 0.725∗∗

(0.002) (0.145) (0.002) (0.151)

Age2 −0.002∗∗ −0.070∗∗ −0.002∗∗ −0.070∗∗

(0.000) (0.019) (0.000) (0.019)

Age3 0.000∗∗ 0.003∗∗ 0.000∗∗ 0.003∗∗

(0.000) (0.001) (0.000) (0.001)

Age4 −0.000∗∗ −0.000+ −0.000∗∗ −0.000+

(0.000) (0.000) (0.000) (0.000)

Age5 0.000∗∗ 0.000 0.000∗∗ 0.000
(0.000) (0.000) (0.000) (0.000)

Scientist Fixed Effects � �
Year Fixed Effects � � � �
Observations 7872 5397 7872 7872
R2 0.05 0.05
Log-Likelihood -970 -781

F-stat of excluded instruments 22.24 22.14
χ2 of excluded instruments 77.82 40.67
Notes: This table reports coefficients for five specifications estimated by OLS. Observations are at the scientisti-yeart level. The dependent

variable Move is equal to 1 if scientist i moves in year t and 0 otherwise. Age is the career age of the scientist (the number of years elapsed since

the author’s first publication). Robust standard errors clustered at the scientist are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 10: IV - Location Choice as a Function of Legacy

(1) (2) (3) (4) (5) (6)
Dependent Variable: Move Move Move Move Move Move
Estimation OLS Logit OLS OLS Logit Logit

Prior Coauthorships 0.005∗∗ 2.850∗∗ 0.006∗∗ 0.005∗∗ 3.757∗∗ 2.689∗∗

(0.001) (0.208) (0.001) (0.001) (0.224) (0.219)

Prior State 0.001∗∗ 0.655∗∗ 0.001∗ 0.001∗∗ 0.415+ 0.983∗∗

(0.000) (0.208) (0.000) (0.000) (0.229) (0.239)

Prior Country 0.002+ 0.731∗ 0.002+ 0.002∗ 0.658+ 0.886∗∗

Scientist Fixed Effects � �
Department Fixed Effects � �
Year Fixed Effects � � � � � �
Observations 150960 150960 150960 150960 25755 59200
R2 0.01 0.01 0.01
Log-Likelihood -809 -463 -606

F-stat 20.30 22.25 24.09
χ2 223.74 328.45 212.41

Notes: Observations are at the scientisti-departmentj level. The dependent variable, Move, is equal to 1 if scientist i ever moves to department j.

Prior Coauthorships is equal to 1 if scientist i has at least one coauthor (formed prior to the scientist’s move) at department j and 0 otherwise.

Prior State is equal to 1 if scientist i has previously lived in the state that department j is in and 0 otherwise. Prior Country is equal to 1 if

scientist i has previously lived in the same country as department j (excluding USA) and 0 otherwise. Robust standard are in parentheses. The

standard errors are clustered at the level of the department in Columns 4 and 6 and at the scientist level in all other columns. F-test and χ
2 are

tests of the key instruments (excluding all fixed effects).
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 11: Instrumental Variable Results
(1) (2) (3) (4) (5)

Estimations: OLS 2SLS 2SLS 2SLS 2SLS
Dependent Variable: Star Output w/o Star Output w/o Star Incumbent Output Joiner Quality

MoveRisk 0.105∗∗

(0.017)

Start−1 1.434∗∗ 0.981∗ 0.392 2.189∗∗

(0.452) (0.468) (0.336) (0.726)

Scientists 0.024∗∗

(0.004)

Incumbents 0.081∗∗

(0.003)

Department Fixed Effects � � � � �
Year Fixed Effects � � � � �
Observations 7395 7140 7140 7140 7140
Number of Departments 255 255 255 255 255
Angrist-Pischke F-test 62.12 62.12 49.19 71.70 62.12
Notes: Observations are at the departmenti-yeart level. All dependent variables except for Star have had a 1 added to them and converted to

natural logarithms. Column 1 is the first-stage regression of MoveRisk on the endogenous variable Star. The variable MoveRisk is a dummy set

to 1 if the number of star scientist’s who are at risk of moving to department j (have prior coauthorship and either prior state or country

experience from Table 10 and are between the career ages of 5 and 10 [see Figure 8 and Table 9]) is greater than or equal to the median number

of 15, and 0 otherwise. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0

otherwise. Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 13: Star Departure Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Star Departt−1 −0.214∗ −0.286∗∗ 0.241
(0.105) (0.102) (0.152)

Scientists 0.012∗∗

(0.004)

Incumbents 0.038∗∗

(0.005)

Department Fixed Effects � � �
Year Fixed Effects � � �
Observations 7140 3416 3835
Number of Departments 255 122 250
Log-Likelihood -150674 -61313 -121149
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by the characteristics of the

scientist. Incumbent Output is a count of the Citation-Weighted Publication of all scientists at department i who were present the year prior to

the star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Depart Star is a

value of 1 if the year is greater than or equal to the year of the star’s departure and 0 otherwise. The two control variables Scientists and

Incumbents are a count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the

year prior to the star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in

parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 14: Arrival of a National Academies Scientist Results
(1) (2) (3)

Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Arrive National Academies Scientistt−1 0.093 −0.334∗ 0.409
(0.098) (0.156) (0.318)

Scientists 0.009+

(0.005)

Incumbents 0.024∗∗

(0.005)

Department Fixed Effects � � �
Year Fixed Effects � � �
Observations 868 868 868
Number of Departments 31 31 31
Log-Likelihood -33994 -19354 -25520
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by the characteristics of the

scientist. Incumbent Output is a count of the Citation-Weighted Publication of all scientists at department i who were present the year prior to

the star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Arrive National

Academies Scientist is a value of 1 if the year is greater than or equal to the year of the arrival of a scientist who is a member of the National

Academies of Sciences and 0 otherwise. The two control variables Scientists and Incumbents are a count of the number of scientists present at

department i in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at

department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 15: Arrival of a National Academies Scientist Rank Results
(1) (2) (3)

Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Arrive National Academies Scientistt−1 −0.190 −0.553∗∗ 0.002
X Top 25 (0.153) (0.174) (0.258)

Arrive National Academies Scientistt−1 0.713∗∗ 0.205 0.857∗

X Non-top 25 (0.154) (0.213) (0.376)

Scientists 0.008+

(0.004)

Incumbents 0.023∗∗

(0.005)

Department Fixed Effects � � �
Year Fixed Effects � � �
Observations 868 868 868
Number of Departments 31 31 31
Log-Likelihood -31059 -18672 -25015
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by the characteristics of the

scientist. Incumbent Output is a count of the Citation-Weighted Publication of all scientists at department i who were present the year prior to

the star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Arrive National

Academies Scientist is a value of 1 if the year is greater than or equal to the year of the arrival of a scientist who is a member of the National

Academies of Sciences and 0 otherwise. This variable is interacted with two indicators each set to 1 if the department the scientist arrived at a top

25 department (at the year of arrival) or a non-top 25 department (at the year of arrival). The two control variables Scientists and Incumbents

are a count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the year prior to

the star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 16: Becoming a National Academies Scientist Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Became National Academies Scientistt−1 0.172 −0.153 0.167
(0.160) (0.207) (0.195)

Scientists 0.013∗∗

(0.004)

Incumbents 0.025∗∗

(0.006)

Department Fixed Effects � � �
Year Fixed Effects � � �
Observations 896 896 896
Number of Departments 32 32 32
Log-Likelihood -32875 -18817 -33429
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by the characteristics of the

scientist. Incumbent Output is a count of the Citation-Weighted Publication of all scientists at department i who were present the year prior to

the star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Became National

Academies Scientist is a value of 1 if the year is greater than or equal to the year an incumbent scientist becomes a member of the National

Academies of Sciences and 0 otherwise. The two control variables Scientists and Incumbents are a count of the number of scientists present at

department i in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at

department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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Table 17: Becoming a National Academies Scientist Rank Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Became National Academies Scientistt−1 0.109 −0.198 0.213
X Top 25 (0.185) (0.239) (0.222)

Became National Academies Scientistt−1 0.385∗ 0.020 0.126
X Non-top 25 (0.156) (0.175) (0.234)

Scientists 0.013∗∗

(0.004)

Incumbents 0.025∗∗

(0.006)

Department Fixed Effects � � �
Year Fixed Effects � � �
Observations 896 896 896
Number of Departments 32 32 32
Log-Likelihood -32660 -18768 -33423
Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart

level. Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by the characteristics of the

scientist. Incumbent Output is a count of the Citation-Weighted Publication of all scientists at department i who were present the year prior to

the star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Became National

Academies Scientist is a value of 1 if the year is greater than or equal to the year an incumbent scientist becomes a member of the National

Academies of Sciences and 0 otherwise. This variable is interacted with two indicators each set to 1 if the institution the scientist arrived at a top

25 department (at the year of arrival) or a non-top 25 department (at the year of arrival). The two control variables Scientists and Incumbents

are a count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the year prior to

the star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+

p < 0.10, ∗
p < 0.05, ∗∗

p < 0.01
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