New Media…

• Historically communications research divided between
 • Mass media
 • Interpersonal communications

• In last few decades, traditional dichotomy has dissolved
 • Fragmentation of media
 • Cable, Web, satellite radio
 • Empowerment of individuals
 • Email lists, blogs, microblogs, social networking sites, You Tube

• Now have a near-continuous distribution of production
 • Emergence of “mass personal communication”
 • Search and recommendation engines → audience selection
Old Questions

- In 1940’s Harold Lasswell laid out the essential problem of social media:
 - “Who says what to whom, through which channel, and with what effect?”
 - Equally relevant today
- Although easy to ask, this question has proven difficult to answer
 - Measuring “who says what to whom” hard at scale
 - Difficulty compounded by multiplicity of channels
 - Measuring “effects” of all this (i.e. influence) even harder
- Fortunately, Web 2.0 revolution may finally bring the answer within reach
Twitter Well Suited To Lasswell’s Maxim

- Full spectrum of production is present
 - Formal organizations (media, government, brands)
 - Celebrities (Ashton, Shaq, Oprah)
 - Public and Semi-Public Figures (bloggers, authors, journalists, public intellectuals)
 - Private Individuals

- Attention is well defined
 - The follower graph

- Information flow is explicit and observable
 - Especially when URLs are included

- Influence can be quantified
 - Retweets, click-throughs, conversions
Measuring Attention on Twitter
Wu, Hofman, Mason, Watts (2011)

- Follower graph (Kwak et al 2010)
 - Twitter as observed by 7/31/2009
 - 42M users, 1.5B edges
- Twitter Firehose
 - 5B tweets, 260M containing bit.ly URLs
- Twitter Lists
 - Tens of millions of lists
 - Very time-consuming to crawl them all
 - Instead introduce two sampling methods
Identifying Elite Users

- Rank users by the frequency of being listed in each category

- Measure the flow of information from top k users in each category to the masses
 - randomly sample 100K ordinary (i.e. unclassified) users, calculate:
 - the average % of accounts they follow among the top k users in each category
 - The average % of tweets they receive from the top k users in each category

Table 3: Top 5 users in each category

<table>
<thead>
<tr>
<th>Celebrity</th>
<th>Media</th>
<th>Org</th>
<th>Blog</th>
</tr>
</thead>
<tbody>
<tr>
<td>aplusk</td>
<td>cnnbrk</td>
<td>google</td>
<td>mashable</td>
</tr>
<tr>
<td>ladygaga</td>
<td>nytimes</td>
<td>Starbucks</td>
<td>problogger</td>
</tr>
<tr>
<td>TheEllenShow</td>
<td>asahi</td>
<td>twitter</td>
<td>kibeloco</td>
</tr>
<tr>
<td>taylorswift13</td>
<td>BreakingNews</td>
<td>joinred</td>
<td>naosalvo</td>
</tr>
<tr>
<td>Oprah</td>
<td>TIME</td>
<td>ollehkt</td>
<td>dooce</td>
</tr>
</tbody>
</table>
Identifying Elite Users

- High concentration of attention
 - Celebrities outrank all other categories
- Let $k = 5000$
 - Use only the top 5K users in snow-ball sample to represent each category
 - All rest fall into “ordinary” category
 - other values of k gives qualitatively indistinguishable results)
- Accounts for about 50% of all tweets received
Attention Between Elites

Category of Twitter Users

A → B

B receive tweets from A

% of tweets received from

<table>
<thead>
<tr>
<th></th>
<th>Celeb</th>
<th>Media</th>
<th>Org</th>
<th>Blog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celeb</td>
<td>38.27</td>
<td>6.23</td>
<td>1.55</td>
<td>3.98</td>
</tr>
<tr>
<td>Media</td>
<td>3.91</td>
<td>26.22</td>
<td>1.66</td>
<td>5.69</td>
</tr>
<tr>
<td>Org</td>
<td>4.64</td>
<td>6.41</td>
<td>8.05</td>
<td>8.70</td>
</tr>
<tr>
<td>Blog</td>
<td>4.94</td>
<td>3.89</td>
<td>1.58</td>
<td>22.55</td>
</tr>
</tbody>
</table>
Retweets

Category of Twitter Users

A retweet B

<table>
<thead>
<tr>
<th>Category</th>
<th>Celeb</th>
<th>Media</th>
<th>Org</th>
<th>Blog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celeb</td>
<td>4,334</td>
<td>1,489</td>
<td>1,543</td>
<td>5,039</td>
</tr>
<tr>
<td>Media</td>
<td>4,624</td>
<td>40,263</td>
<td>7,628</td>
<td>32,027</td>
</tr>
<tr>
<td>Org</td>
<td>1,570</td>
<td>2,539</td>
<td>18,937</td>
<td>11,175</td>
</tr>
<tr>
<td>Blog</td>
<td>3,710</td>
<td>6,382</td>
<td>5,762</td>
<td>99,818</td>
</tr>
</tbody>
</table>
Research in 1950’s emphasized importance of *personal* influence

- Trusted ties more important than media influence in determining individual opinions

Also found that not all people are equally influential

- **Opinion leaders** act as intermediaries between mass media and the masses
 - More influential, and more exposed to the media
 - But dispersed throughout social strata

Called this “the two-step flow” of information
Quantify 2-step flow on Twitter

- Random sample of 1M ordinary users
- Focus now exclusively on Media-originating URLs

Indirectly flow

intermediary

5K media accounts

Fraction of media-originated URLs received through intermediaries
- \(\text{avg}\left(\frac{n_2}{n}\right) = 0.46 \)

Direct flow

of sampled users with \(n > 0 \)
- 600K (60%)
Who Are The Opinion Leaders?

- Not surprisingly, they intermediate more than random users
- Also consume more Media URLs
They also tweet more, have more followers
Conclusions

• Attention has fragmented, but remains remarkably concentrate on tiny fraction of population
• Surprising support for the Two-step flow
 • Intermediaries have more followers, tweet more, and consume more media
 • Just like the original theory claimed
• Lifespan of content on Twitter reflects the nature of the content, not the influence of the source
 • Twitter really a subset of a larger media ecosystem, from which it draws and redraws content
From Attention to Influence

• Opinion leaders are interesting in part because they appear to generate a “multiplier effect”
 • Influence one opinion leader and they will influence X others

• Two-step flow has become conflated with diffusion research to produce notion of “Influencers”
 • “Law of the Few” (Gladwell, 2000)
 • “One in ten Americans tells the other nine how to vote, where to eat, and what to buy.” (Keller and Berry, 2003)
 • “Influencers have become the ‘holy grail’ for today’s marketers.” (Rand, 2004)
BUT GRAILS ARE HARD TO FIND...
Can One Predict Influencers?

• After the fact, can always tell a story about why X succeeded
 • Can identify some group of individuals who were involved early on
 • They will seem to have been influential
• But to *make use* of influencers, need to identify them in advance
• Very little evidence that marketers (or anyone else) can do this consistently
Influence on Twitter
Bakshy, Hofman, Mason, Watts (2011)

• An individual “seed” user tweets a URL (here we consider only bit.ly)
• For every follower who subsequently posts same URL (whether explicit “retweet” or not), seed accrues 1 pt
• Repeat for followers-of-followers, etc. to obtain total influence score for that “cascade”
 • Where multiple predecessors exist, credit first poster
 • Can also split credit or credit last poster (no big changes)
• Average individual influence score over all cascades
 • Highly conservative measure of influence, as it requires not only seeing but acting on a tweet
 • Click-through would be good, but not available to us
Cascades on Twitter

• 1.6M distinct “seeds”
• Each seed posts average of 46.3 bit.ly URL’s
• Hence 74M cascades total
• Average cascade size 1.14
 • Median cascade size 1
• Average influence score is 0.14
Most Tweets Don’t Spread

~ 90% of adoptions are direct from the source
~ 99% of adoptions are within 1 hop from the source
Content and Cascade Size

URLs in the “Lifestyle” category spread farthest
Very local and very global topics (Sports & News) spread the least
Unsurprisingly, on average more interesting URLs spread farther.
Predicting Influence

• Objective is to predict influence score for future cascades as function of
 • # Followers, # Friends, # Reciprocated Ties
 • # Tweets, Time of joining
 • Past influence score

• Fit data using regression tree
 • Recursively partitions feature space
 • Piecewise constant function fit to mean of training data in each partition
 • Nonlinear, non-parametric
 • Better calibrated than ordinary linear regression

• Use five-fold cross-validation
 • For each fold, estimate model on training data, then evaluate on test data
 • Every user gets included in one test set
Results

• Only two features matter
 • Past local influence
 • # Followers
• Surprisingly, neither # tweets nor # following matter
• Also surprisingly, content doesn’t help
• Model is well calibrated
 • average predicted close to average actual within partitions
• But fit is poor ($R^2 = 0.34$)
 • Reflects individual scatter
Who are the Influencers?

Circles represent individual seeds (sized by influence)
Necessary but not sufficient

- Seeds of large cascades share certain features (e.g., high degree, past influence)
- However, many small cascades share those features, making “success” hard to predict at individual level
- Common problem for rare events
 - School shootings, Plane crashes, etc.
 - Tempting to infer causality from “events,” but causality disappears once non-events accounted for
- Lesson for marketers:
 - Individual level predictions are unreliable, even given “perfect” information
- Fortunately, can target many seeds, thereby harnessing average effects
Should Kim Kardashian Be Paid $10,000 per Tweet?

- On average, some types of influencers are more influential than others
 - Many of them are highly visible celebrities, etc. with millions of followers
 - But these individuals may also be very expensive (i.e. Kim Kardashian)

- Assume the following cost function
 - $c_i = c_a + f_i c_f$, where $c_a =$ acquisition cost; $c_f =$ per-follower cost
 - Also $c_a = a c_f$, where a expresses cost of acquiring individual users relative to sponsoring individual tweets

- Should you target:
 - A small # of highly influential seeds?
 - A large # of ordinary seeds with few followers?
 - Somewhere in between?
“Ordinary Influencers” Dominate

• Assume $c_f = $0.01
 • Equivalent to paying $10K per tweet for user with 1M followers
• When $c_a = $1,000, ($a = 100,000$) highly influential users are most cost effective
• But for lower ratios, most efficient choice can be individuals who influence at most one other

Influence per Follower

![Graph showing influence per follower with legend for different values of c_a.](Image)
Conclusions

• Attention on Twitter is surprisingly concentrated
 • 50% of attention is directed to one of ~ 0.1% of users

• Nevertheless, influence is hard to predict
 • Most cascades are tiny
 • Large cascades are more likely to start with highly visible users
 • But efficiency is often maximized by targeting “ordinary” influencers (who influence just one other on average)

• By targeting many seeds, can improve predictive power dramatically
 • Consistent with “big seed” model, not “epidemics”
 • No free lunch, but a cheap snack isn’t bad
References

Eytan Bakshy, Jake Hofman, Winter Mason, and Duncan J. Watts. “Everyone’s an influencer: Quantifying Influence on Twitter” *Proceedings of the 4th International Conference on Web Search and Data Mining*, Hong Kong (2011)

Background:

