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ABSTRACT 

 
Over the last decade, generic penetration in the US pharmaceutical market has increased substantially, 
providing significant consumer surplus gains. But is generic entry reducing the flow of early stage 
pharmaceutical innovation and therefore future availability of new medicines? We explore this question 
using novel data sources and an empirical framework that models the flow of early-stage pharmaceutical 
innovations as a function of generic penetration, scientific opportunity and challenges, firm innovative 
capability, and additional controls. Our estimates suggest a sizable, robust, negative relationship between 
generic entry and early-stage pharmaceutical research activity. A 10% increase in generic penetration 
decreases early-stage innovations in the same market by 7.3%. This effect is weaker in top therapeutic 

markets where an increase in generic penetration by 10% decreases the flow of early-stage innovations by 

2.2%. However, in those top markets, a 10% increase in the stock of  Paragraph IV challenges decreases 
the flow of early-stage innovation by 3.9%.  Our estimated effects appear to vary across therapeutic 
classes in sensible ways, reflecting the differing degrees of substitution between generics and branded 
drugs in treating different diseases.   Finally, we are able to document that with increasing generic 
penetration, firms in our sample are shifting their R&D activity to more biologic-based (large-molecule) 
products rather than chemicals-based (small-molecule) products as evidenced in their early-stage 
pipelines. We conclude by discussing the potential implications of our results for long-run consumer 
welfare, policy, and innovation. 
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1 Introduction 

 In his provocative paper, “The Health of Nations,” Yale University economist William Nordhaus 

(1999) argues that the advances in human welfare generated by better medical science over the past half 

century have been equal in value to all of the consumption increases from all other sources put together.  

Nordhaus’s claim is backed up by evidence documenting the extensive gains in longevity and other 

dimensions of human health over the period; multiplying these gains by even conservative estimates of 

the value of a “statistical life” result in very large numbers (e.g., Murphy and Topel, 2006). Celebrated 

experts in the economics of health care, such as Victor Fuchs, have suggested that most of the real 

improvement in human health generated over this period stems from modern medicine’s expanding 

arsenal of pharmaceutical products.  While documenting these claims in a way that meets modern 

evidentiary standards is challenging, the work of scholars such as Frank Lichtenberg (2001, 2004, 2007) 

has provided evidence suggesting the gains from pharmaceutical innovation have been very large.  In the 

long run, global investments in pharmaceutical research have proven to be very good ones. 

 These benefits, however, have not come without significant costs; pharmaceutical innovation is 

highly risky and expensive. These costs are passed on to consumers in the form of higher prices. 

Currently, prescription drug spending in the U.S. exceeds $300 billion, an increase of $135 billion since 

2001, comprising approximately 12 percent of total health care spending (GAO, 2012). Over this time 

period, generic products continue to account for an ever increasing share of these prescriptions drug 

expenditures, saving consumers an estimated $1 trillion (GAO, 2012). Current regulation attempts to 

balance the trade-off between access to these lower cost generics while at the same time continuing to 

incentivize innovation. And while the presence of generics has been shown to be welfare enhancing in the 

short-run (Branstetter et al., 2011), others have argued that this balance has ‘tipped’ in favor of access 

(Higgins and Graham, 2009; Knowles, 2010). Still unanswered, however, is whether this increase in 

generic entry has harmed long term innovation. Our study attempts to address this question and quantify, 

for the first time, the impact of generic entry on early-stage pharmaceutical innovation.   

 We start by constructing a novel and unique dataset which allows us to analyze this issue at a 

narrow therapeutic level. Instead of relying on patents as measures of innovation we instead focus on 

actual early-stage pipeline products. While patenting is certainly important in the pharmaceutical industry, 

it can occur anytime throughout the drug development process. Our focus, on the other hand, allows us to 

analyze what is happening specifically to the early-stage inputs of the clinical development process. 

Current regulation provides the mechanisms by which generics are allowed to enter the U.S. market. As 

such, if we find a relationship between generics and early-stage innovation, our findings should add to a 
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rich historical literature dealing with regulation and innovation (e.g., Schumpeter, 1934; Arrow, 1962; 

Temin, 1979;Dasgupta and Stiglitz, 1980;Jaffe and Lerner, 2006). 

 Our empirical framework starts by modeling the flow of early-stage pharmaceutical innovations 

as a function of generic entry and penetration, as well as scientific opportunity and challenges, firm 

innovative capability and a vector of additional controls. In doing so, we make several contributions to the 

literature. Firstly, we document a negative and significant relationship between generic entry (penetration) 

and early-stage innovation. The elasticity from our specification implies that a 10% increase in generic 

penetration in a particular market will decrease early-stage innovations, in that same market, by 7.3%. 

Second, we isolate the top therapeutic markets and while our baseline result remain robust we 

also find that early generic Paragraph IV challenges are associated with declines in early-stage 

innovation, a finding consistent with the theoretical predictions of Hughes et al (2002).Third, Branstetter 

et al. (2011) document the extent of cross-molecular substitution (CMS) in the hypertension market. We 

focus on one such sub-market, anti-epileptics, where we expect CMS to be low for medical and scientific 

reasons. Interestingly, in this sub-market, we find no evidence that the growing presence of generics is 

slowing the flow of early-stage innovation in anti-epileptics. This finding suggests a possible differential 

effect of generics across sub-markets depending on the extent of CMS. 

 Finally, if the flow of innovation in a particular market is slowing, the natural question arises as to  

where is pharmaceutical innovation taking place? We consider the possibility that a rotation is occurring 

out of chemical-based (small molecule) products into biologic-based (large molecule) products. Current 

regulation does not extend to biologics and there is no pathway for ‘biosimilars’ to enter the U.S. market. 

Exploiting this regulatory difference between chemical and biologic-based innovations we indeed find a 

positive relationship between generic entry and a rotation towards biologic-based products. As 

conjectured by Golec et al. (2010), such a rotation suggests that the nature of innovation taking place in 

the pharmaceutical industry is changing.  

Our results should be viewed in a nuanced manner. On one hand, we demonstrate that the advent 

of generics is related to a declining flow of early-stage innovation. If the flow of early-stage innovation 

slows it is rational to expect the flow of late-stage products to also decline. On the other hand, one could 

argue that regulation is in fact ‘pushing’ innovation away to therapeutic markets for which viable generics 

exist. As a result, R&D efforts and expenditures could potentially be flowing to other therapeutic areas 

which may be more underserved. While conducting a more micro analysis of which therapeutic categories 

might have gained, it is beyond the scope of this paper. That said, we do document that a broad rotation is 

occurring from chemical-based to biologic-based products. This change in the type of innovation may 

have significant implications for the future, especially since biologics tend to be more expensive, on 
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average, than chemical-based products and until current regulatory challenges are resolved, these higher 

prices will persist for longer periods of time. 

The paper proceeds as follows. Section 2 offers a brief discussion of the regulatory environment 

around generic competition in which pharmaceutical firms operate. Section 3 discusses related literature. 

Our empirical specification and data are outlined in Section 4. Results are presented in Section 5 and we 

conclude in Section 6. 

 

2 Regulatory environment and generic entry 

The current regulatory environment faced by pharmaceutical companies in the United States can 

be traced to the passage of the Drug Price Competition and Patent Term Restoration Act in 1984, 

informally known as “Hatch-Waxman”. One of the hallmarks of the legislation is its purported trade-off: 

it allows expedited Food and Drug Administration (FDA) approval for generic entry while extending the 

life of pharmaceutical patents in order to compensate innovators who lost time on their “patent clocks” 

waiting for FDA approval (Grabowski, 2007).  This balance was deemed necessary to equalize two 

conflicting policy objectives: giving pharmaceutical firms incentives to conduct drug research while 

simultaneously improving consumer welfare by enabling generic firms to quickly bring copies to market 

(Federal Trade Commission (FTC), 2002).  

When a pharmaceutical company submits a New Drug Application (NDA) to the FDA for 

approval they are required, by law, to identify all relevant patented technologies necessary to create the 

drug; these patents are subsequently listed in the FDA Orange Book.  Upon approval of a drug, the FDA 

will restore patent term to the pharmaceutical firm for time used by the FDA in the approval process 

(Grabowski, 2007).1  In addition, the FDA will also grant each new approved product regulatory 

protection lasting for five years (“data exclusivity”) which runs concurrently with patent protection.2  

During this data exclusivity period, regardless of the status of the underlying patent(s), no generic entry 

may occur. At the conclusion of data exclusivity branded products are protected only by their patents; this 

period running from the cessation of data exclusivity to the expiration of the patent(s) is commonly 

referred to as “market exclusivity” (Figure 1). 

Prior to the passage of Hatch-Waxman, generic manufacturers seeking to sell their products in the 

U.S. market had to demonstrate the safety and efficacy of their products by putting them through clinical 

trials.  While the outcome of these trials lacked the uncertainty involved in the trials of an innovative new 

                                                           
1  There are limits to this.  Pharmaceutical firms cannot receive a patent extension of more than five years, nor are 
they entitled to patent extensions that give them effective patent life (post approval) of greater than 14 years.   
2  Orphan drugs receive 7 years of data exclusivity; reformulations receive 3 years of data exclusivity and pediatric 
indications receive an additional 6 months of data exclusivity.   
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drug, the time and expense involved were a significant disincentive for generics manufacturers to put 

products on the market, since they could not charge a premium price to offset the costs of clinical trials. 

Before Hatch-Waxman, it is estimated that more than 150 products existed without any patent protection 

and without any generic entry (Mossinghoff, 1999). While Hatch-Waxman did not lessen the burden of 

the clinical trials process for branded pharmaceutical companies seeking approval for new drugs, it 

essentially eliminated the requirement for separate clinical trials for generic manufacturers.  This was 

made possible since generic manufacturers could simply demonstrate “bioequivalence” with branded 

products by showing that the active ingredient in their product diffused into the human bloodstream in a 

manner similar to the original product. 

Hatch-Waxman provides four pathways (or “Paragraphs”) a generic firm may follow in order to 

gain entry into a market (Figure 2).The process starts with the filing of an Abbreviated New Drug 

Application (ANDA) by a generic manufacturer with one of the four Paragraph certifications. A 

Paragraph I certification is one for which the originator firm has not filed patent information for its 

branded product. Paragraph II certification relates to when the branded product’s patent has already 

expired (i.e., the end of market exclusivity), and Paragraph III certification relates to cases when the 

generic manufacturer notes that the patent on the branded product will expire on a certain date and that it 

seeks to enter only after patent expiry or end of market exclusivity. The fourth certification, Paragraph IV, 

argues that the generic manufacturer does not infringe on a branded product’s patents or that those patents 

are invalid. More importantly, however, a Paragraph IV certification can be acted on by the FDA after the 

conclusion of data exclusivity anytime during the market exclusivity window.3This suggests that, if 

successful, these challenges can significantly decrease the effective patent life of branded products 

bringing generics to the market earlier than otherwise would be the case (Higgins and Graham, 2009; 

Grabowski and Kyle, 2007). By the end of the 2000s ANDA applications with Paragraph IV certifications 

accounted for more than 40% of all generic filings (Higgins and Graham, 2009; Berndt et al., 2007). 

 

3 Related literature 

 This paper draws upon the economics of innovation literature, which has a rich history dating 

back to Schumpeter (1934, 1942). Schumpeter argued that large monopoly firms could become the focus 

of innovation. This led to systematic investigations of market structure and firm size on innovation (e.g., 

Mason, 1951; Mansfield, 1981; Prusa and Schmitz, 1991; Henderson, 1993; Cohen and Klepper, 1996a, 

                                                           
3   Generic manufacturers may file a Paragraph IV certification up to one year prior to the end of data exclusivity but 
the FDA may not act on it until the conclusion of data exclusivity. 
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1996b). Subsequent work in this stream has considered other determinants behind a firm’s innovative 

capacity:  for example, firm characteristics (Henderson and Cockburn, 1994, 1996; Ahujaet al., 2009), 

firm capabilities (Trajtenberg, 1989; Cohen and Levinthal, 1989), R&D expenditures (Griliches, 1979); 

the degree of interaction between R&D and other functions of the firm (Teece, 1986; Mowery and 

Rosenberg, 1989), and a firm’s ability to tap external technology markets (Arora, 2011). 

 Across industries, appropriability considerations have also been shown to playan important role 

in shaping incentives for innovation (Cohen, 2010). Intellectual property has been an important lever in 

understanding the role of the government in creating or destroying incentives for innovation (Rocket, 

2010). More broadly, Jaffe and Lerner (2006) point out that over time, U.S. patent policies have changed 

from being the “fuel for the engine to the sand in the gears.” This can be especially troubling for 

industries that depend on patents since there is theoretical evidence on the positive role stronger 

intellectual property laws have on enhancing incentives for innovation and social welfare (e.g.,Cassiman 

and Veugelers, 2002; Schotchmer, 2004; Bloom et.al., 2007). 

Broadly speaking though, while theoretical results on the benefits of intellectual property are 

unambiguous, empirical evidence has been mixed. Hall (2007), for example, suggests that while 

strengthening a patent system results in more use of the patent system, it is less clear if it has an effect on 

aggregate innovative activity. This finding is supported by Sakakibara and Branstetter (2001) and Qian 

(2007) in different settings. This question continues to evoke interest among scholars, especially those 

interested in the pharmaceutical industry, since herein lies a natural experiment to explore how variation 

in intellectual property policies and accompanying regulatory pathways could potentially drive or reduce 

innovation, which has significant implications for social welfare in the long run (Hopenhayn and 

Mitchell, 2001; Hopenhaynet.al., 2006; Higgins and Graham, 2009). 

3.1     Regulation and innovation 

                The debate over the relationship between regulation and innovation has a long history. Classical 

economic theory argues that regulation imposes a cost burden on firms causing them to reallocate their 

innovation expenditure towards circumventing or complying with regulatory frameworks. As a result, a 

trade-off is created wherein societies have to grapple with their development trajectory while at the same 

time trying to enhance social welfare. The 'Porter Hypothesis' has been particularly influential in this 

context, arguing that environmental, health and safety regulations may regularly induce innovation and 

could possibly even enhance competition in more regulated industries. Moreover, Porter argues that early 
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regulation that spurs innovation in compliance can create a type of first mover advantage for firms 

(Porter, 1991; Porter and van der Linde, 1995; Ashford and Hall, 2011).  

                An empirical snapshot across industries provides mixed results in studying the relationship 

between regulation and innovation. In manufacturing, Jaffe and Palmer (1997) find that while 

environmental compliance costs seem not to influence patent counts of U.S. manufacturers, there is a 

significant relationship between R&D expenditures and compliance. Further, Pickman (1998) finds that 

regulation can cause firms to change the direction of innovation from market to social innovation. Similar 

effects of regulation on enhanced social but decreased market innovation are documented in the nuclear 

power industry (Cohen, 1979; Marcus, 1988) and in healthcare organization (Walshe and Shortell, 2004). 

Mixed results have been seen in telecommunications (Prieger, 2007; Kahn et al., 1999) while positive 

effects have been documented in in the financial sector (Baer and Pavel, 1988; Silber 1983), fisheries 

(Aerni, 2004) and autos (Atkinson and Garner, 1987; Goldberg, 1998). Finally, in the pulp and paper 

industry Norberg-Bohm and Rossi (1998) find that regulation potentially enhances innovation but the 

innovation might be more incremental in nature. 

Despite these extensive studies a fundamental question in the economics of innovation remains 

unsettled, with direct impact on this discussion. Ambiguity still remains on the optimal market structure 

required for enhancing innovation (Farrell and Shapiro, 2008) and the accompanying regulatory 

environment required herein. As a result policy makers have found it difficult to align social and private 

benefits from innovation simply by increasing or decreasing innovation incentives through regulatory 

policies, intellectual property or otherwise. For example, Segal and Whinston (2007) discuss how 

competition policies that protect new entrants from exclusionary behavior by incumbents can raise entrant 

profits, thereby encouraging entrant innovation. However, lower possible future profits from incumbency 

can eventually slow the rate of innovation. 

3.2 Regulation and incentives to innovate in the pharmaceutical industry 

 The pharmaceutical industry offers a 'fascinating laboratory' to investigate what we know and do 

not know about the economics of innovation (Scherer, 2010). Historically, regulation has played a key 

role in this industry (Wiggins, 1981; Danzon et al., 2003; Danzon and Keuffel, 2007) especially with the 

social planner trying to achieve the right balance between private and social benefits from innovation 

(Grabowski et al., 1978; Higgins and Graham, 2009; Munos, 2009).Moreover, current patent policy 

appears to have bifurcated competition within the industry into two categories (Lichtenberg and 

Philipson, 2002; Philipson and Dai, 2003). The first is “within-patent competition” or direct competition 
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from generic manufacturers producing the same product as a pharmaceutical company. The second, 

“between-patent competition”, results from similar products other pharmaceutical companies might be 

producing. 

 Studying various aspects of regulation on pharmaceutical innovation, researchers have come to 

differing conclusions. One on hand, some have found regulation harmful for innovation. For example, 

Hauptman and Roberts (1987) found a temporary reduction in innovation due to increased stringency of 

regulation on young biotechnology firms. Grabowski and Vernon (1977) argued that increased stringency 

and compliance uncertainty due to regulatory delay resulted in decreased innovation. Grabowski et al 

(1978) arrived at similar conclusions in analyzing the impacts of the 1962 Kefauever-Harris 

Amendments, which increased the rigor of drug screening. Using the UK as a baseline for regulatory 

stringency, Thomas (1990) argued that gradual increases in regulatory stringency harmed innovation in 

smaller pharmaceutical firms. In contrast, studies by Katz (2007) and Eisenberg (2007) found that 

regulation promoted more clarity and complete information in the market thereby stimulating innovation. 

More specifically, Katz argued that stringent regulation acted as an “anti-lemons” device. This increased 

the value of drugs making it to market which, in turn, incentivized innovation. This view is supported by 

Munos (2009). While these studies have focused on the flows of innovation, Golec et al (2010) argues 

that the flow might not change but rather the nature of the innovation. 

 The overarching role of regulation for innovation in the industry is further complicated by the 

nature of drug discovery. Getting a new drug to market is a highly probabilistic event that is long and 

requires significant R&D commitments (DiMasi et al., 1991, 2003; Pisano 2006). While there were quite 

a number of new drugs launched in the mid-1990s, the number of new chemical entities introduced since 

then have stagnated or declined. This raises a fundamental question about the productivity of 

pharmaceutical R&D (Cockburn, 2006). These declines are taking place in an era of increasing R&D 

expenditures, a robust supply of basic science coming from university research, and a healthy market for 

ideas and technology. 

 Apart from the nature of drug discovery, generic entry and competition have been important 

determinants in innovation incentives in the pharmaceutical industry (Grabowski and Vernon, 1990; 

Comanor and Scherer, 2011). Regulation, namely Hatch-Waxman, provides the mechanism for all modes 

of generic entry. Prior research has analyzed the entry decision by generic manufacturers after branded 

patent expiration (e.g., Scott Morton, 2000; Reiffen and Ward, 2005) as well as the early entry decisions 

via Paragraph IV challenges (Berndt et al.,2007; Higgins and Graham, 2009; Hemphill and Sampat, 

2011). While recent work has explored the impacts of these early generic challenges on welfare 
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(Branstetter et al., 2011; Mulcahy, 2011), firm value (Panattoni, 2011) and alliance formation (Filson and 

Oweis, 2010), less attention has been paid to demonstrating the effects, if any, of generic entry on 

innovation.  

Hughes et al (2002) theoretically predicts a decrease in the flow of new drugs and other authors 

have hypothesized about the impact (Grabowski and Kyle, 2007; Higgins and Graham, 2009; Branstetter 

et al., 2011). One exception is a study by Filson and Oweis (2010). They find a negative relationship 

between early generic challenges and alliance formation. Within the biopharmaceutical context prior 

research has linked alliance formation with innovation and new product development (Rothaermel and 

Deeds, 2004; Hoang and Rothaermel, 2005), thereby providing an indirect link between early generic 

entry and diminished innovation.  

4 Empirical specifications and data 

Previous research in this area has struggled with data limitations. We are fortunate to have access 

to a range of unique and comprehensive data sets that provide us with powerful leverage over some of the 

econometric challenges we confront. First, data from Pharmaprojects is used to construct our innovation 

measure as well as provide information on late-stage and current products. This data was also used to 

obtain information on pipeline suspensions and discontinuations as well as product withdrawals. Sales 

(branded and generic) and promotions data for all drugs sold in the U.S. for our sample firms was 

obtained from IMS MIDAS™. Data from Parry Ashford Publications (www.paragraphfour.com) allows 

us to identify each Paragraph IV certification dating back to 2003.4  This data provides full drug level 

information about the challenge and outcome which we can link to our other data resources.  For data 

prior to 2003 we filed a Freedom of Information Act (FOIA) request with the FDA. Publications data was 

obtained from PubMed with relevant citations gathered from SCOPUS. Finally, data from IMS NDTI™ 

and IMS MIDAS™ were combined in order to create a concordance between ICD-9 and ATC.5 

 Due to data constraints our final sample covers 1998 to 2010. Firms are included in our sample if 

they had at least one approved product and at least one early-stage innovation, limiting our focus to larger 

firms. This limitation excludes smaller, research-intensive firms.  Clearly these smaller firms are 

important to the industry however our focus is on how generic competition an incumbent pharmaceutical 

                                                           
4   Paragraph IV certification data only became publicly available in 2003.  In order to supplement the data prior to 
2003 we filed a FOIA request with the FDA.  Other researchers (Berndt et al., 2007) have used survey data in order 
to capture pre-2003 activity.  In a recent study, Panattoni (2011) collected data from District Court decisions. 
5 The 9th revision of the International Disease Codes (ICD) is maintained jointly by the National Center for Health 
Statistics and Centers for Medicare and Medicaid Services.  Anatomical Therapeutic Codes (ATC) are controlled by 
the World Health Organization Collaborating Centre for Drug Statistics (WHOCC). 
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firm faces within a product market influences their early stage innovation decision. Thus, our unit of 

observation is at the firm, therapeutic class, and year level. Since not all firms innovate in all every 

therapeutic category in every year of our sample, the panel is unbalanced. All financial variables are 

converted to constant 2005 dollars.          

4.1 Empirical specifications 

The regulatory structure imposed on the pharmaceutical industry makes early-stage product 

development relatively easy to track.  Before obtaining approval to market a new drug, pharmaceutical 

firms must bring each prospective new product through a series of clinical trials, each one more 

comprehensive than the previous one.  Because the introduction of new drugs is so important for the 

financial health of drug companies, the progress of new candidate drugs through the development 

“pipeline” is closely tracked, and commercial databases contain rich data on these candidates.  Not only is 

there nearly universal coverage of all candidate drugs being tested for eventual sale in the U.S. market, 

but we also know the chemical composition of the drug, the prospective disease targets, and the 

development history (some drugs are initially developed to fight one disease but then are discovered to 

have positive effects against others). The richness of the data allows us to pose the following question:  

has the rising intensity of generic entry caused a slowdown in the early-stage introduction of new 

compounds?        

Attempts to assess this relationship confront a major challenge. At the same time that generic 

entry has been rising, the pharmaceutical industry has encountered a widely publicized “productivity 

crisis” (Cockburn, 2006). R&D expenditures rose throughout the 1990s and early-to-mid 2000s, but new 

drug approvals peaked in the mid-1990s and have been stagnant or falling ever since. Many inside and 

outside the industry speak of an exhaustion of research opportunities; the easy-to-discover drugs have 

already been introduced; and, the diseases that are now the focus of research effort are extremely complex 

and difficult to treat. To the extent that there really is a decline in research productivity, this could lead 

firms to ratchet back R&D expenditure, even in the absence of a growing generic threat to profitability.  

Our empirical challenge will be assess the impact of increased generic entry on new innovation while 

controlling for contemporaneous changes in research opportunities.  

We propose to do this using a regression specification that models introductions of new 

compounds into early stage clinical development as a function of scientific opportunity and challenges, 

firm innovative capability, downstream co-specialized assets, and generic entry, with a vector of 

additional controls. 
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ijtitijtijtijtijtjtijtijtijt SSAPDZOGGPI εββββββββα +++++++++= −−−− 8716151413210         (1)  

where Iijt, measures early-stage pipeline innovations by firm i in ATC 2-digit market j in time t. Because 

the outcome variable is a count variable, the statistical model employed in our regression should be one 

designed to handle count data. We use the fixed effects Poisson and negative binomial estimators 

developed by Hausman et al. (1984), with the standard errors for the Poisson model adjusted as 

recommended by Woolridge (1999). Given that not all firms innovate in each therapeutic category in each 

year, it is possible that the data may contain zeros. The negative binomial has the advantage of dealing 

with this in a natural way. The specification includes fixed effects for year (αt), firm (αi), and therapeutic 

(ATC) category (αj). It is possible that we are not capturing all the dynamic, unobserved nature of 

technological opportunities arising in product markets. Therefore, we also include a paired fixed effect, 

interacting therapeutic market dummies with year dummies, (αj*αt).
6 

With the passage of Hatch-Waxman generic drugs have been able to enter the market more easily 

and quickly (Congressional Budget Office, 1998; Saha et al., 2006). As such, we attempt to capture the 

influence of generic penetration (GPijt) and incidence of attempted early generic entry (Gijt) facing firm i 

in market j and time t. If our goal is to isolate the possible generic effects on innovation, then we need to 

control for underlying scientific opportunities (Ojt-1) and challenges (Zijt-1) within a specific therapeutic 

market (j) and time (t-1).  

Pharmaceutical firms differ in their research and development capabilities which they have built 

over time. A given firm is more likely to introduce a new compound in a therapeutic category in which it 

already has substantial research expertise. We control for this expertise by constructing a three-year 

moving average of past product introductions (Dijt-1) for firm i in therapeutic market j lagged one period, 

t-1. In addition to past introductions we capture products in later-stage development (Pijt-1) for firm i, in 

therapeutic market j lagged one period, t-1.Prior research has also documented a strong connection 

between a firm’s downstream co-specialized assets and their R&D decision (Teece, 1986; Chan et al., 

2007). We measure a pharmaceutical firm’s, i, downstream investment by a ratio of their promotions 

                                                           
6 Technological opportunities maybe unobserved at the product market level and evolve over time as a function of 
the nature of the innovation process as well as the market's response to the launch of a new innovation (Schmookler, 
1962); this is a characteristic not uncommon to pharmaceuticals. Statin drugs, which today are one of the largest 
selling therapeutics, had a difficult beginning in 1978 with the unsuccessful launch of Mevacor®. Over time, 
however, these difficulties subsided as new technological opportunities led to the five types of statin-molecules 

currently sold in the U.S. 
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expenditures and sales in particular therapeutic market, j, and time, t. Finally, we use sales by firm i in 

year t to control for firm size.7 

Current regulation provides an alternative for estimating the impact of generics on innovation. 

Chemistry-based pharmaceutical products become susceptible to Paragraph III generic entry after patent 

expiration. However, they also become susceptible to early generic entry via Paragraph IV challenges 

after only five years after approval (Figure 1). The same legal frameworks do not (yet) provide the same 

pathway for biosimilar entry after biologic patent expiration or the equivalent of a Paragraph IV 

challenge. Furthermore, biotechnology-based products are explicitly guaranteed 12 years of data 

exclusivity so even if and when Paragraph IV challenges of biologic drugs become feasible, they will 

occur much later in the product life cycle. Clearly, this difference in regulation creates an incentive for 

pharmaceutical companies to favor biologic-based (“large molecule”) therapies over chemistry-based 

(“small molecule”) therapies, even if the latter may be more effective in a purely therapeutic since. This 

suggests an alternative specification: 
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Here, the dependent variable measures the difference between chemistry-based innovations and 

biologic-based innovations. Likewise, our controls for firm-specific development capability and market 

presence are redefined to reflect relative capability in chemistry-based versus biologic-based 

development. Given these controls, we would not expect generic penetration (GPijt) or early generic entry 

(Gijt) to have an impact on the choice of technology – unless firms’ research choices are being affected by 

the prospect of generic competition.      

4.2  Dependent Variables 

4.2.1  Early-stage innovation (Iijt) 

 Innovation in the pharmaceutical industry has been measured a number of different ways, for 

example, by patents or new products. Unlike patents which can be obtained for a drug candidate at any 

stage of development, given our current interest, we want to ensure that we are consistently observing 

activity at any early reported stage of development. If firms are responding to exogenous factors, such as 

                                                           
7 Optimally we would like to measure a firm’s R&D expenses at the therapeutic category level. Unfortunately, this 
data is not publicly reported. Since R&D expenses are only available at the firm, year level, we exclude them and 
sweep that effect into our firm size variable, Sit, and firm fixed effect, αi.  
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generic penetration, early generic entry or changes in scientific opportunity, this is the area in the pipeline 

we would expect to observe the impact. Moreover, when viewed in its entirety, this portion of the 

research pipeline has the lowest opportunity costs in terms of switching, altering or abandoning a project. 

As such, using data from Pharmaprojects we define (Iijt) as a count of pre-clinical and Phase I products for 

firm i, in therapeutic market j at time t. 

4.2.2 Difference in early-stage innovation (CIijt – BIijt) 

 If current regulation is in fact causing biologic-based innovation to be preferred to chemical-

based innovation then we need to modify our innovation measure in order to capture this change.  Using 

the Origin of Material field within Pharmaprojects we are able to sort early-stage innovation (Iijt) into 

either a biologic-based (BIijt) or chemical-based (CIijt) innovation. In operationalizing Equation (2), the 

dependent variable is the difference between these two types of innovation, CIijt– BIijt. A negative 

coefficient on a right-hand side (RHS) variable (GPijt or Gijt) would imply that as that variable increased 

the difference (CIijt– BIijt) would decline. In other words, BIijtis greater than CIijt or the flow of biologic-

based innovations exceeds the flow of chemical-based innovations. 

 It is possible for firm i, in therapeutic market j in time t to have more biologic-based than 

chemical-based innovations. In this case, our difference variable (CIijt – BIijt) will become negative, 

negating the use of count variable models. As such, we create a new variable, dum(CIijt – BIijt), that equals 

1, 2 and 3 if (CIijt – BIijt) is negative, zero or positive, respectively. This reclassification will permit us to 

use an ordered logit specification (Hausmanet al., 1992).8 Again, a negative coefficient on a RHS variable 

would imply that as that variable increased dum(CIijt – BIijt) will decline. In this case the difference, (CIijt– 

BIijt), will become negative and the interpretation is the same as above.  

4.3  Independent Variables 

4.3.1  Generic penetration (GPijt) 

 Hatch-Waxman laid out the modes by which generic manufacturers can enter chemical-based 

therapeutic markets. This entry eventually leads to rapid deterioration in branded market sales (Sahaet al, 

2006). The pharmaceutical industry has engaged in a variety of tactics to delay this loss, such as 

authorized generics, however these efforts are at best temporary. Using product level data from IMS 

MIDAS™ we are able to determine the extent of generic penetration that firm i faces in therapeutic j in 

time t. We define generic penetration (GIijt) as the sum of generic sales in therapeutic j at time t divided 

                                                           
8 We thank Jerry Thursby for this suggestion. 
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by the sum of generic and firm i sales in therapeutic j at time t. A negative coefficient on Gijt implies that 

as generic penetration in a therapeutic market increases, the flow of innovations decrease.   

4.3.2  Paragraph IV challenges (Gijt) 

Early generic entry via Paragraph IV challenges have steadily increased since early 2000. 

Successful challenges permit early entry of generic products prior to the expiration of branded product 

patents, effectively compressing patent lives (Grabowski and Kyle, 2007) leading to producer loss 

(Branstetter et al, 2011). We use data from Perry Ashford Publications (www.paragraphfour.com) and 

FDA in order to track these product challenges. For each firm iwe generate a stock of challenges, Gijt, in 

therapeutic market j at time t. A negative coefficient on Gijt implies that as early generic challenges 

increase in a therapeutic market, the flow of innovations decrease. This is consistent with the theoretical 

prediction of Hughes et al. (2002).         

4.4  Controls 

4.4.1  Scientific opportunities (Ojt-1) 

 Our interest is in capturing potential changes in early stage innovations. Equation 1 captures both 

the change in flows in innovations within therapeutic market j while Equation 2 captures the potential 

rotation between chemical-based and biologic-based innovations. A major concern will be effectively 

capturing and controlling for underlying scientific opportunities within each therapeutic market j at time t. 

Sufficiently capturing scientific and technological opportunities has been a grand challenge in the 

economics of innovation literature dating back to Griliches’ (1979) seminal work. Similar to Furman et 

al. (2006), we construct a novel bibliographic measure that captures publicly available academic research 

in the life sciences. Prior research has demonstrated the link between academic research and inputs into 

the innovation process (Mansfield, 1995; Gittelman and Kogut, 2003). 

 We start by merging data from IMS MIDAS™ and IMS NDTI™ in order to create a concordance 

between ICD-9 codes and ATC4. Created within this concordance is a list of standardized keywords from 

ICD-9. These keywords are searched within the National Library of Medicine’s PUBMED database 

which we then assign to the matching ATC4. This search identified a unique sample of 6.5 million journal 

articles between 1950 and 2010. Journal articles can be applicable to multiple ATC4 categories thus 

creating a raw article count of over 20.9 million. Next, SCOPUS Sciverse – an Elsevier provided database 

was used in order to gather forward citations from the year of publication to the end of 2010. Our sample 

of 20.9 million articles generated over 345 million forward citations. Finally, since our unit of observation 

in a therapeutic market is at the two-digit ATC level, we aggregate this data from ATC4 to ATC2. Thus 



16 

 

our variable Ojt-1, we argue, captures scientific opportunities available in therapeutic market j at time t-1. 

A natural log transformation was applied to this variable. 

 

4.4.2  Scientific challenges (Zijt-1) 

 In contrast to scientific opportunities that may potentially “pull” firms towards a specific 

therapeutic market, we control for scientific challenges that may “push” firms away from a specific 

therapeutic market. Utilizing data from Pharmaprojects we identify all suspended, discontinued and 

withdrawn products across the entire research pipeline from pre-clinical candidates to approved products. 

Development can be ended and products pulled for a multitude of reasons many of which, at their most 

fundamental level, are due to some type of scientific challenge. For example, Merck pulled Vioxx® from 

the market due to negative side-effects while the Alzheimer disease drug candidate semagacestat was 

discontinued by Eli Lilly in Phase III clinical trials after disappointing results. We define Zijt-1as the 

number of scientific challenges faced by firm i, in therapeutic market j at time t-1. 

 

4.4.3  Other controls 

 Clearly, pharmaceutical companies differ in their drug development capabilities they have built 

over time. A given firm is more likely to introduce a new compound in a therapeutic category in which it 

already has substantial research expertise. In order to control for this persistence we use data from 

Pharmaprojects to create a three-year moving average of past drug introductions, Dijt-1, by firm i in the 

same therapeutic market j. This three-year moving average is then lagged one period,(t-1). Finally, for our 

specification in Equation 2 we decompose this variable into chemical-based (CDijt-1) and biologic-based 

(BDijt-1) products. 

In addition to controlling for past products, we also control for late-stage innovations within the 

product pipeline. Using data from Pharmaprojects we define Pijt-1as the number of Phase II and Phase III 

innovations in firm i’s pipeline in therapeutic market j in time t-1.  

Prior research has also documented the connection between downstream co-specialized assets and 

a strong commitment to research efforts within a particular therapeutic class (Chan et al, 2007). The 

presence of these assets can create a ‘lock-in’ effect, suggesting a positive relationship with early-stage 

innovation. Similar to Ceccagnoli et al (2010) we proxy a firm’s downstream co-specialized assets by a 

ratio of promotions to product sales, SAijt, for firm i within therapeutic market j at time t. Promotions and 

product sales are collected from IMS MIDAS™ and promotions consists of detailing, journal advertising 

and direct-mail. Detailing is the direct promotion of products by pharmaceutical representatives to 

physicians. As with our prior controls, for the specification in Equation 2, we decompose this ratio into a 
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firm’s chemical-based (CSAijt) and biologic-based (BSAijt) commitments.  Finally, firm size can impact 

innovation rates. As a result, we control for firm size with pharmaceutical sales by firm i in year t, Sit. 

Sales data was gathered from IMS MIDAS™ and natural logs were taken. 

5  Empirical Results 

5.1  Descriptive statistics 

Descriptive statistics for our variables are presented in Table 1 and a correlation matrix is 

presented in Table 2. Our dependent variable, Iijt, captures early-stage innovation and varies between 0 

and 36 for firm i, in therapeutic market j, at time t. While our firms had, on average, 0.78 early-stage 

innovations within a therapeutic market at time t, if should be remembered that not every firm has an 

early-stage innovation, in every therapeutic market in each year. If we focus solely on therapeutic 

categories with activity, then the average increases to 2.12 early-stage innovations. Firms in the top 

quartile of firm size had, on average, 3.07 innovations within a therapeutic market j at time t, as compared 

to 1.45 innovations for the smallest quartile firms. ATC N, focusing on the nervous system, had the 

largest number of innovations, while ATC P, which focuses on anti-parasitic products, had the lowest 

number of innovations. The relative contribution to total innovations of each broad therapeutic category 

(ATC1) over our sample period is displayed in Figure 3. 

Generic penetration, GPijt, was about 54% at the mean and just over 80% at the median. Generic 

penetration was greatest in ATC S (sensory organs) and lowest in ATC J (anti-infectives). Over our 

sample period, generic penetration ranged from 53% to 57% with the last two years seeing an increase to 

56% and 57%, respectively. Further, on average, the stock of Paragraph IV challenge (Gijt) that firm i, 

faced in a therapeutic category j, in year t, was 0.01 with a maximum of 3 faced by Pfizer in 2010 within 

urological drugs (ATC G4). If we focus on those categories where challenges occur, the average number 

of drugs being challenged increases to 1.10. Consistent with prior findings (Higgins and Graham, 2009), 

the number of Paragraph IV challenges are increasing over our sample period. 

Our measure of technological opportunity, Ojt-1, measured by the logarithm of stock of citation 

weighted articles in year t-1 for therapeutic market j, varied between 0 and 17.9, with an average of 8.09. 

This average translates into an absolute value of approximately 4.35 million citations for each therapeutic 

market j in each year t-1. Over our sample period the greatest technological opportunity existed in ATC 

categories N5 (psycholeptics) and N6 (psychoanaleptics). ATC N5 includes antipsychotics, anxiolytics, 

and hypnotics and sedatives. ATC N6 includes antidepressants, psychostimulants, combined 

psycholeptics and pschoanaleptics, and anti-dementia. This measure of technological opportunity is 
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negatively correlated with our measure of technological challenges, Zijt-1. On average our firms faced 0.05 

challenges in therapeutic market j at time t-1. The number of challenges varied between 0.26 and 6 with 

the greatest technical challenges experienced in ATC T2, which includes various recombinant-based 

products, such as interferon. 

On average, our firms had a lagged three-year moving average of 0.24 products and 0.09 late-

stage products in therapeutic market j at time t-1. Our control for downstream co-specialized assets, the 

ratio of promotions to sales for firm i in therapeutic market j at time t, averaged 45%. This suggests firms 

are making significant downstream investments in therapeutic areas in which they operate (and plan to 

operate). Finally, it is essential to control for firm size, which we do by the logarithm of total 

pharmaceutical sales for firm i in year t, which, on average, is 12.64. 

5.2  Results 
 
5.2.1  Impact of generic entry on the flow of innovation 

We start by considering the possible effects on the flow of early-stage innovation due to overall 

generic penetration and early generic challenge. We first test Equation 1 with a Poisson specification 

(Table 3). However, given the Poisson’s well know problem of assuming that the mean of the distribution 

is equal to the variance, we also present results using a fixed-effect negative binomial specification (Table 

4). The dependent variable, in all specifications is Iijt or the count of firm i innovations in therapeutic 

market j at time t. Model 1 in both tables (Table 3 and Table 4) presents a baseline regression with firm 

controls and firm, year and therapeutic market fixed effects; Model 2 in each table adds controls for 

scientific opportunity (Ojt-1) and scientific challenges (Zijt-1); finally, in Models 3, 4, and 5 again for each 

table, we include our complete specification with differing sets of fixed effects. Model 3 includes just 

firm and year fixed effects, Model 4 adds therapeutic fixed effects while Model 5 includes an interaction 

between the year and therapeutic market fixed effects. This interaction, we argue, controls for unobserved 

changes in a particular therapeutic market in a specific year. Standard errors in Table 3are adjusted 

according to Wooldridge (1999). 

Across all specifications and models we find a negative and significant coefficient estimate on 

GPijt. This negative relationship suggests that increases in generic penetration are related to decreases in 

the flow of early stage innovation. Taking the coefficient from our complete specification (Model 5, 

Table 4) we calculate an elasticity equal to -0.73. In other words, a 10% increase in generic penetration is 

related to a 7.3% decrease in early-stage innovation. To our knowledge this is the first empirical evidence 

that documents the effect of generic penetration on early-stage pharmaceutical innovation in the U.S. 
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Since the pathway for generic entry is provided for under Hatch-Waxman, we can attribute this potential 

loss in innovation coming from regulation. If fewer candidates are entering a therapeutic pipeline then 

fewer drugs will eventually come out.  

For much of the last decade the pharmaceutical industry has been experiencing a productivity 

decline (e.g., Moses et al., 2005; Cockburn, 2006; Munos, 2009; Pammolli, et al., 2011); for markets that 

have experienced significant generic penetration our results provide one possible explanation for this 

decline. Unlike other types of markets, once a generic becomes available, uptake increases significantly 

due to their lower cost and utilization by drug insurance plans. Over our sample period, the total generic 

share of the prescription market in the U.S. increased from 51% to 67%.9As such, in many markets 

generics have come to dominate. 

Generic penetration into a market is clearly harmful for branded producers; though, from a social 

welfare perspective the interpretation is more nuanced. If viable generics are present in a market, our 

results indicate that innovation will decrease in that market.10Notwithstanding this decrease, it is 

reasonable to expect those research expenditures to be deployed to other therapeutic markets. Indeed 

Pammolliet al. (2011) argues that one of the reasons R&D productivity has declined has been a shift into 

areas with unmet therapeutic needs, which also have higher risks of failure. Our results support this view 

and provide one possible explanation for why this shift may be occurring. In essence regulation, namely 

Hatch-Waxman, by providing mechanisms of entry for generics create conditions under which the 

pharmaceutical industry redirects R&D efforts to markets less (or not) served by generics.  

If such a rotation from one therapeutic market to the next is occurring, this can possibly have 

significant future consequences. First and foremost, if the therapeutic category that is seeing research 

expenditures leave has a different transition probability than the therapeutic category where expenditures 

are flowing, this could have consequences on the net flow of innovation (either increasing or decreasing). 

Second, if the rotation is causing a shift from chemical-based (small molecule) products to biologic-based 

                                                           
9  Based on author’s calculations using data from IMS MIDAS™ accessed 12 March 2012. 
10

In theory, generics should be perfect substitutes for branded drugs since they are bioequivalent.  Cleanthous (2002) 

shows that the data do not support this relationship and suggests this is the result of ‘spurious product 
differentiation’, which he defines as arising “…when consumers perceive physically identical products to differ in 
quality.”  Recent evidence, however, may suggest that consumer perceptions have merit and while drugs may be 
bioequivalent, they may indeed differ in quality.  Several articles appeared in the April 17, 2007 edition of the 
prestigious journal Neurology discussing the high incidence of break-through seizures with generic anti-epileptics.  
Insurance companies such as Blue Cross Blue Shield of Georgia allow pediatric customers to stay on branded anti-
epileptic medications even though generics are available.  Differences across generics for the same brand have also 
been reported.  We are not suggesting all generics have problems but it appears in some instances where the 
therapeutic window is very narrow these perceptions may have some merit. 
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(large molecule) products (we consider this possibility below) then this could have severe consequences 

for the nations’ future prescription drug bill as large molecule drugs are often orders of magnitude more 

expensive than small molecule drugs. Currently Hatch-Waxman does not extend to biologic-based 

products. They also have longer data exclusivity (12 years versus 5 years) and there is currently no 

regulatory path for “biosimilars” to actually enter the market. In sum, the current regulatory environment 

has created an economic incentive to pursue biologic-based products over chemical-based ones. 

For chemical-based products Hatch-Waxman provides a mechanism for possible early entry via 

the Paragraph-IV challenge. Prior work has demonstrated the welfare effects (Branstetter et al., 2011) and 

impacts on alliances (Filson and Oweis, 2010) of early generic entry via these challenges. In our models 

we consider whether these early challenges appear to have any influence on the early-stage innovation 

decision. For our overall sample, across all specifications we find no significant effect of Paragraph-IV 

challenges, Gijt, on early-stage innovation. These challenges are probabilistic events and while they have 

been relatively successful (Higgins and Graham, 2009) generic entry is not guaranteed. These combined 

results seem to suggest that, for our overall sample, the impact on innovation does not start until actual 

entry. 

Turning to our controls for scientific opportunity (Ojt-1) and scientific challenges (Zijt-1) we find 

that both positively and significantly influence the flow of early-stage innovation. Using a similar 

approach in the creation of their scientific opportunity variable, Furman et al. (2005) find a positive 

relationship with patenting. Our results take this one step further and document a relationship with actual 

early-stage pipeline innovation. Much of the basic science research that is captured in our variable takes 

place in academic settings; as such this finding is broadly consistent with past work documenting the role 

of academic research in industrial innovation (e.g., Mansfield, 1995; Cohen et al., 2002). Interestingly, 

while our findings are consistent with our a priori beliefs with respect to scientific opportunity, the same 

cannot be said with respect to scientific challenges. Our initial beliefs were that opportunity might serve 

as a mechanism to ‘pull’ innovation while challenges might serve as a mechanism to ‘push’ innovation 

away from a particular field. It appears, however, that firms do not shy away from scientific challenges 

but rather appear to respond by probing harder into these particular therapeutic markets. As others have 

suggested, failures can serve as a learning mechanism for future endeavors (Chiou et al., 2012). Statin 

drugs, which today are one of the largest selling therapeutics, had a difficult beginning in 1978 with the 

unsuccessful launch of Mevacor®. Over time, however, the industry worked through these difficulties as 

new technologies led to the five types of statin-molecules currently sold in U.S.  
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Finally, we control for firms’ research capabilities by their innovative output in a particular 

therapeutic market, as measured by lagged late-stage pipeline products,Pijt-1, and lagged product 

introductions, Dijt-1. Expectantly, both are positively and significantly related to the flow of early-stage 

innovations. The only variable that was inconsistent across the two specifications (Table 3 and Table 4) is 

our measure for firm size, Sit. Focusing on the negative coefficient on our fixed-effect negative binomial 

model in Table 4 seems to suggest that larger firms are laggards in terms of early-stage innovation; a 

relationship documented elsewhere in the literature (e.g., Graves and Langowitz, 1993; Rothaermel and 

Hess, 2007). 

 5.2.1.1 Isolation of the top therapeutic categories 

While other factors certainly matter, we know from prior research that market size will attract 

generic competition (Kyle and Grabowski, 2007; Hemphill and Sampat, 2011). In an effort to understand 

whether innovation decisions in the largest markets are different than our overall sample, we isolate the 

top seven therapeutic markets in terms of sales as of 2010 (Table 5).11 In general, results for these top 

markets are similar to our overall sample with two exceptions. First, the implied elasticity associated with 

generic penetration, GPijt, decreases to -.22. In other words, as generic penetration increases by 10%, the 

flow of early-stage innovations decreases by 2.2%.  Second, the coefficient on Gijt, which captures the 

stock of Paragraph IV challenges faced by firm i in market j at time t, is now negative and significant. The 

implied elasticity from the coefficient in Model 4 (Table 5) is -0.39. In other words, a 10% increase in the 

stock of Paragraph IV challenges decreases the flow early-stage innovation by 3.9% within market j for 

firm i at time t. 

It appears that in the largest markets, pharmaceutical firms are not waiting until actual entry 

occurs to make early innovation decisions. We conjecture that this might be a result of the sheer volume 

of challengers that attack a larger market drug. Recent work documents a positive relationship between 

the number of generic manufacturers involved in a Paragraph IV challenge and the likelihood that early 

entry will occur (Palermo et al, 2012). As such, in these larger markets, it appears that firms may be 

making the innovation decision before generic entry actually occurs. Furthermore, the findings in Table 5 

provide empirical support for the theoretical prediction of Hughes et al. (2002). Paragraph IV challenges 

and subsequent early entry have led to a compression in effective patent lives (Grabowski and Kyle, 

                                                           
11The seven markets include: ATC A2 (stomach acid-related disorders), C10 (statins for diabetes and hypertension), 
G3 (sex hormones and modulators of the genital system), J1 (anti-bacterial drugs for systemic use), L1 (anti-
neoplastic agents or cancer drugs), N5 (anti-epileptics), N6 (anti-depressants), and R3 (obstructive airway diseases).  
Results are robust when we consider only the top five markets. 
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2007); Hughes et al. hypothesized that this decrease would lead to a decline in the flow of innovation, 

which is what we observe with our results in Table 5. 

 5.2.1.2 Case study: Anti-epileptics (ATC N5)   

Most prescription health plans in the U.S. allow for the use of branded products until generics 

become available.  In most cases patients will be given the generic by retail pharmacies unless the 

prescription is written “Dispense as Written” or if the patient explicitly asks for a branded drug (in which 

case there is usually a much higher co-payment).  More recently, however, insurance firms have begun to 

engage in “cross-molecular” substitution.  For example, let’s assume there are 3 branded products in a 

particular market, Drug A, Drug B and Drug C, sold by three different pharmaceutical firms and that a 

generic for Drug B just entered the market. Cross-molecular substitution exists when insurance companies 

attempt to encourage patients taking Drug A or Drug C to switch to Generic B.  While insurance firms 

cannot force patients to move they can entice them with lower (or no) copayments for Generic B.   

The extent of these impacts will vary across therapeutic categories as some drugs are more easily 

substitutable.  For example, we would expect higher substitutability in markets such as hypertension and 

allergy and lower substitutability in markets such as depression and epilepsy. Moreover, the “quality” of 

generic drugs has been questioned in some therapeutic markets. Multiple articles in the April 17, 2007 

edition of the prestigious journal Neurology discussed the high incidence of break-through seizures with 

generic anti-epileptics. These concerns and the associated costs of break through seizures led some 

insurance companies, such as BlueCross Blue Shield of Georgia, to allow pediatric customers to stay on 

branded anti-epileptic medications even though a generic was available (Branstetter et al., 2011). 

Economic intuition suggests that if a class of drugs was less susceptible to cross-molecular 

substitution and patients were more sensitive to (permitted) differences with generics, then we might 

expect to see a differential innovation response in that particular sub-market. Focusing on the sub-market 

that includes anti-epileptics (ATC N5) we indeed see this in our results (Table 6). More specifically, 

neither increases in generic penetration, GPijt, nor Paragraph IV challenges, Gijt, appear to have any 

significant effect on early-stage innovation in anti-epileptics. This suggests that there are sub-markets for 

which direct substitution to a generic may be problematic, cross-molecular substitution is low and as a 

result the effect on early-stage innovation is less of a concern. 

 

5.2.2  Are generics enhancing the switch to biologics? 
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Andrew Witty, CEO GlaxoSmithKline, has been a vocal proponent of generics publicly noting 

that the industry is moving away from ‘white pill, Western markets’ due to increased generic 

competition.12 Others have conjectured that declining revenues associated with small molecule (chemical-

based) products are increasingly motivating firms to switch to large-molecule (biologic-based) products 

(Wong, 2009). This suggests that generic entry may well “change the nature of technological change” in 

the pharmaceutical industry (Arora and Gambardella, 1994; Golec et al, 2010). 

As we discussed above, such a rotation could have mixed consequences for future drug 

development. On the one hand, if the rotation is also to an underserved therapeutic market, then society 

may benefit from needed drugs. On the other hand, if this rotation is to a therapeutic market with a lower 

transition probability, then the overall flow of new drugs available to society may decline. Ultimately, 

fewer new drugs will also limit the potential future supply of generics. Such a rotation from chemical-

based to biologic-based products, regardless of whether it is occurring in the same or different therapeutic 

market may also have an impact on future drug expenditures. Biologics are more expensive than 

chemical-based products, on average (Aitken et al., 2009; Trusheim et al., 2010). If uptake between the 

two types of products over their entire product lifecycle remains similar then, all else equal, the percent of 

overall health care expenditures spent on pharmaceuticals will increase. 

In order to consider whether a rotation to biologic-based products may be occurring, we 

empirically test our specification in Equation 2. The dependent variable in this specification is the 

difference between early-stage chemical-based innovations and early-stage biologic-based innovations. 

As constructed this variable can now take on negative values, which negates the use of count models. As 

such we create a variable, dum(CIijt-BIijt), that equals 1, 2 and 3 if the difference (CIijt – BIijt) is negative, 

zero, or positive, respectively.13 

Given the construction of our dependent variable, dum(CIijt–BIijt), we test Equation 2 with an 

ordered logit model (Table 7). For comparative purposes we also report results from OLS regressions 

(Table 8); results are qualitatively robust. Across all specifications our measure of generic penetration is 

negatively and significantly related to the difference in types of early-stage innovations. This suggests 

that as generic penetration increases, our dependent variable, dum(CIijt-BIijt), declines which, in turn, 

implies that the difference, (CIijt – BIijt) is decreasing. In other words as generic penetration increases the 

                                                           
12http://www.fiercepharma.com/story/glaxo-grows-out-white-pills-and-western-markets/2009-10-28-0 
13  The distribution of dum(CIijt-BIijt) has around 60% of the observations tightly centered around 0 but the rest 
equally spread between being positive and negative. 
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flow of biologic-based innovations is greater than the flow of chemical-based innovations for firm i, in 

market j, at time t. It appears that pharmaceutical firms are responding to generic competition by rotating 

to biologics where they do not face similar competitive constraints. 

Consistent with our overall findings early generic Paragraph IV challenges, Gijt has no impact on 

the difference in early-stage innovations.  Interestingly, however, the positive and significant coefficient 

on Ojt-1suggests that as scientific opportunity increases the difference between these two types of early-

stage innovations decreases. In other words, the flow of chemical-based (small molecule) innovations 

exceeds the flow of biologic-based (large molecule) innovations. This seems somewhat counter-intuitive 

given the explosion of basic science research in the biologic-based sciences over the past decade. That 

said, the construction of Ojt-1starts in 1950 -- so it includes decades of research before the introduction of 

biologics. 

Finally, our controls for firm capabilities offer mixed results. The difference in chemical-based 

and biologic-based approved products, (CDijt-1 – BDijt-1), is positive and significant, as expected.  In other 

words, if a firm has more chemical-based products (approved) relative to biologic-based products then the 

flow of chemical-based early-stage innovations relative to biologic-based innovations is greater. Not only 

do pharmaceutical firms continue to develop products within the same therapeutic category but they also 

appear to continue to develop products of the same type.  

6  Conclusion 

 For many years, scholars have been interested in the effect that regulation may have on 

innovation. In the pharmaceutical industry current regulation provides the mechanism by which generic 

products are able to enter the market. We are able to exploit this framework in order to estimate the 

effects of generics on early-stage pharmaceutical innovation. For the first time we quantify the loss in 

innovation due to the presence of generics. More specifically, as generic penetration increases by 10% we 

observe a decrease of 7.3% in early-stage innovation. While we do not observe any relationship between 

early generic Paragraph IV challenges and the flow of innovation for our overall sample, when we focus 

specifically on the top therapeutic markets we find a slightly negative relationship. For that sample, a 10% 

increase in Paragraph IV challenges relates to a 3.9% decrease in the flow of early-stage innovation. For 

the overall sample, it appears that the firms are waiting until actual entry before making early-stage 

innovation decisions. However, in the largest markets it appears that firms begin to make those innovation 

decisions earlier when existing products are being challenged. 
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 We observe in Branstetter et al. (2011) the importance of cross-molecular substitution. This 

suggests that there are potential submarkets where the presence of generics may have less of an impact. 

This is indeed what we observe in one such submarket, ATC N5, which covers anti-epileptics. In this 

market, we observe no effect of generics on the early-stage innovation decision. In this particular 

submarket, and other similar markets with low CMS, switching to another medicine, even a generic, can 

potentially be medically problematic. While we just analyze one particular sub-market, our analysis does 

suggest that there are potentially important differences across therapeutic categories. This could have 

policy implications in terms of how regulation related to competition can be designed such that there is a 

differential incidence of its intensity across various therapeutic markets. 

 If the flow of early-stage innovations in a particular market declines; a natural question becomes 

whether we observe an increase in other markets. We address this question by exploiting the differential 

economic incentives created by regulation between chemical-based and biologic-based products. 

Currently, data exclusivity is longer for biologic-based products and there exists no pathway to market for 

biosimilars. We conjecture that as chemical-based products are pressured by generics pharmaceutical 

firms will begin to change the nature of their innovation by rotating to biologics. This is indeed what we 

observe. Increases in generic penetration in market j are related to a decrease in the difference between 

innovation types. In other words, the flow of early-stage biologic-based innovations exceeds the flow of 

chemical-based innovations in the same market, j. Firms do not appear to be abandoning market j but 

rather changing the nature of the innovation taking place. This is intuitive especially if a firm has 

significant investments in downstream co-specialized assets, for example, in marketing, manufacturing 

and distribution. 

 The interpretation of our results is more nuanced than we originally anticipated when we 

undertook our investigations. On the one hand, it appears that generics are having an effect on the flow of 

early-stage pharmaceutical innovation. If the flow of early-stage innovation slows, the flow of new 

products will most likely also slow thereby hurting innovator firm revenues. On the other hand, one could 

argue that regulation is performing a social welfare enhancing role. That is, if viable generics are 

available in a market, their presence pushes the pharmaceutical industry to redeploy their resources to 

other, possibly more underserved, therapeutic markets. While analyzing the rotation between therapeutic 

markets is beyond the scope of this paper, what we do observe is that as the thumb of market competition 

is pressed down on a particular market, firms appear to be changing the nature of their innovation. That is 

we see a rotation within a market from chemical-based to biologic-based innovation. This rotation will 

have long term consequences in terms of overall societal welfare and on future medical expenditures 
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since these drugs are, on average, more expensive and they enjoy a market devoid of direct generic 

competition.   

 No paper is without caveats and limitations; ours is no exception. While we believe we make a 

significant contribution to the literature, more work needs to be done. While we capture the effects of 

what is taking place within a particular therapeutic market, future work needs to understand the dynamics 

between markets. However, such a task would require a far more nuanced understanding of the scientific 

relationship between therapeutic markets. Future research should also supplement our results with a 

careful assessment of the overall welfare effects coming from generics. Many are interested in the ‘access 

vs. innovation’ debate surrounding the passage of Hatch-Waxman. Prior research has demonstrated short 

term consumer (producer) gains (losses) but the question remained whether a trade-off was being made 

against future innovation (Branstetter et al., 2011). Our results seem to suggest that indeed there is a 

decline in the flow of innovation allowing us to get one step closer to being able to answer the access vs. 

innovation question in a more holistic manner. As is usually the case in economic research, much more 

remains to be done.  
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Figure 1.Exclusivities and innovation in pharmaceuticals. This figure demonstrates the two types of 
protection conferred on new drugs. When a new drug is approved by the FDA the first five year period 
(seven years for orphan drugs and 5 ½ years for pediatric drugs) carries with it a regulatory protection 
called ‘data exclusivity’ that runs concurrent with underlying patent protection.  Data exclusivity protects 
the underlying clinical data.  At the conclusion of data exclusivity a drug is protected only by its patents 
until they expire, a period termed ‘market exclusivity’.  Para-IV challenges occur only during the market 
exclusivity period.  Note that patents are generally applied for and granted well before a drug is approved 
by the FDA.     

  

 

 

Figure 2. ANDA patent certification options for generic manufacturers. The regulatory 

pathway for generic entry in the U.S. can occur in one of four ways.  Paragraph I, Paragraph II, and 

Paragraph III are used by generic manufacturers for drugs whose patents are either not listed in the FDA 

Orange Book or for those patents that have expired (or will expire). Paragraph IV is the only pathway that 

facilitates generic entry before expiry of patents or the conclusion of market exclusivity. Source: FTC 

(2002).
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FIGURE 3.RELATIVE CONTRIBUTION TO TOTAL INNOVATIONS ACROSS THERAPEUTIC CATEGORIES 
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TABLE 1. VARIABLE DEFINITION AND DESCRIPTIVE STATISTICS 

VARIABLES DEFINITION SOURCE OBS MEAN S. DEV. MIN MAX 

Iijt

 
Early stage innovations: Count of early stage 

pipeline (Pre-clinical + Phase 1) at i, j, t level. 
Pharmaprojects 31970 0.78 1.81 0 36 

GPijt

 
Generic penetration: Ratio of generic sales to 
sum of focal firm and generic sales at i, j, t level. 

IMS MIDAS 31970 0.54 .46 0 1 

Gijt

 
Paragraph IV challenges: Stock of Paragraph IV 

challenges faced by firm at i, j,  t level. 

Paragraphfour.com  and  

USFDA 

31970 0.01 0.01 0 3 

Ojt-1

 
Technological opportunity: Logarithm of stock 
of citation-weighted articles in year t-1 for jth 

therapeutic market. 

IMS NDTI & MIDAS, 

PubMed and SCOPUS 

31970 8.09 7.30 0 17.9 

Zijt-1

 
Technological challenges: Counts of suspended 
or discontinued pipeline projects and withdrawn 

approved products at i, j, t-1 level. 

Pharmaprojects 31970 0.05 0.26 0 6 

Dijt-1

 
Firm innovative capability: Moving average of 
product introductions in t-1, t-2, t-3 at the i, j, t-1 

level. 

Pharmaprojects 31970 0.24 1.01 0 25.67 

Pijt-1

 
Firm innovative capability: Count of Phase II 

and Phase III products at the i, j, t-1 level. 
Pharmaprojects 31970 0.09 0.35 0 6 

SAijt

 
Downstream co-specialized assets: Ratio of 
promotions at the i,j, t level and total 

pharmaceutical sales at the i, j, t level. 

IMS MIDAS 31970 0.45 19.36 0 2225 

Sit

 
Firm size: Logarithm of total pharmaceutical 

sales at the i, t level. 
IMS MIDAS 31970 12.64 4.45 0 17.23 
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TABLE 2. CORRELATION MATRIX 

 

VARIABLES Iijt GPijt Gijt Ojt-1 Zijt-1 Dijt-1 Pijt-1 SAijt Sit 

Iijt

 
1.000         

GPijt

 
-0.358 1.000        

Gijt

 
0.030 -0.016 1.000       

Ojt-1

 
-0.143 0.447 0.069 1.000      

Zijt-1

 
0.361 -0.139 0.027 -0.036 1.000     

Dijt-1

 
0.357 -0.180 0.053 -0.083 0.152 1.000    

Pijt-1

 
0.334 -0.225 0.008 -0.127 0.198 0.357 1.000   

SAijt

 
-0.007 0.018 -0.002 -0.001 -0.004 -0.005 -0.005 1.000  

Sit

 
0.068 0.101 0.053 0.027 0.041 0.104 0.036 0.008 1.000 
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TABLE 3.FLOW OF INNOVATION: POISSON REGRESSION 

 

VARIABLES 

 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 

Iijt

 
Iijt

 
Iijt

 
Iijt

 
Iijt

 

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                  

STD. ERROR            

GPijt

 
 
 
 

 
 
 

-1.606*** 
(0.023) 

 

-1.353*** 
(0.024) 

 

-1.338*** 
(0.024) 

 

Gijt

 
 
 
 

 
 
 

0.045 
(0.051) 

 

0.034 
(0.051) 

 

0.067 
(0.051) 

 

Ojt-1

 
 
 
 

0.012*** 
(0.001) 

 

0.008*** 
(0.001) 

 

0.035*** 
(0.001) 

 

0.034*** 
(0.001) 

 

Zijt-1

 
 
 
 

0.402*** 
(0.001) 

 

0.456*** 
(0.010) 

 

0.373*** 
(0.001) 

 

0.374*** 
(0.010) 

 

Dijt-1

 

 
0.106*** 
(0.003) 

 

0.113*** 
(0.003) 

 

0.091*** 
(0.003) 

 

0.101*** 
(0.003) 

 

0.105*** 
(0.003) 

 

Pijt-1

 
0.246*** 
(0.010) 

 

0.139*** 
(0.010) 

 

0.237*** 
(0.010) 

 

0.132*** 
(0.010) 

 

0.141*** 
(0.010) 

 

SAijt

 

 
-0.003* 
(0.002) 

 

-0.003* 
(0.002) 

 

-0.001 
(0.001) 

 

-0.001 
(0.001) 

 

-0.001 
(0.001) 

 

Sit

 
0.010*** 
(0.003) 

 

0.011*** 
(0.003) 

 

0.018*** 
(0.003) 

 

0.019*** 
(0.003) 

 

0.019*** 
(0.003) 

 

Constant 

 
0.371 

(1.004) 
0.234 

(1.004) 
-0.101 
(1.001) 

-0.378 
(1.004) 

-0.047 
(1.084) 

Firm Fixed Effect Y Y Y Y Y 

Year Fixed Effect Y Y Y Y Y 

Therapeutic Fixed Effect Y Y N Y Y 

Year*Therapeutic Fixed Effect N N N N Y 

Pseudo 
2

R  

0.35 0.37 0.34 0.40 0.41 

N 31,970 31,970 31,970 31,970 31,970 

Adjusted standard errors (Woolridge 1999) in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 4. FLOW OF INNOVATION: FIXED EFFECT NEGATIVE BINOMIAL REGRESSION 

 

VARIABLES 

  

 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 

Iijt

 
Iijt

 
Iijt

 
Iijt

 
Iijt

 

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

GPijt

  

  

-1.932*** 
(0.030) 

 

-1.691*** 
(0.031) 

 

-1.678*** 
(0.031) 

 

Gijt

  

  

0.037 
(0.075) 

 

0.024 
(0.070) 

 

0.048 
(0.070) 

 

 

Ojt-1

 

  

0.003** 
(0.002) 

 

0.009*** 
(0.001) 

 

0.029*** 
(0.002) 

 

0.029*** 
(0.002) 

 

Zijt-1

  

  

0.448*** 
(0.013) 

 

0.469*** 
(0.014) 

 

0.398*** 
(0.013) 

 

0.399*** 
(0.013) 

 

 

Dijt-1

 

  

0.103*** 
(0.004) 

 

0.106*** 
(0.004) 

 

0.090*** 
(0.004) 

 

0.094*** 
(0.004) 

 

0.098*** 
(0.004) 

 

Pijt-1

 0.142*** 
(0.016) 

 

0.036** 
(0.015) 

 

0.074*** 
(0.016) 

 

0.028* 
(0.015) 

 

0.037*** 
(0.015) 

 

SAijt

 -0.010 
(0.006) 

 

-0.008 
(0.006) 

 

-0.005 
(0.004) 

 

-0.001 
(0.002) 

 

-0.001 
(0.002) 

 

Sit

  

 

-0.043*** 
(0.003) 

 

-0.040*** 
(0.003) 

 

-0.043*** 
(0.003) 

 

-0.028*** 
(0.003) 

 

-0.027*** 
(0.003) 

 

Constant 

  
0.457*** 
(0.060) 

0.431*** 
(0.060) 

1.000*** 
(0.052) 

0.553*** 
(0.061) 

0.488*** 
(0.117) 

Firm Fixed Effects Y Y Y Y Y 

Year Fixed Effects Y Y Y Y Y 

Therapeutic Fixed Effects Y Y N Y Y 

Year*Therapeutic Fixed 
Effects 

N N N N Y 

Log Likelihood -28950.64 -28545.61 -28280.31 -26833.91 -26732.74 

N 31,970 31,970 31,970 31,970 31,970 

Standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 5. EFFECTS OF GENERIC ENTRY IN TOP THERAPEUTIC MARKETS 

 

VARIABLES 

  

NBREG FIXED 

EFFECTS 

NBREG FIXED 

EFFECTS 

NBREG FIXED 

EFFECTS 

NBREG FIXED 

EFFECTS 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 

Iijt

 
Iijt

 
Iijt

 
Iijt

 

 
COEFF                

STD. ERROR            

 
COEFF                

STD. ERROR            

 
COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

GPijt

 

 

  -0.794*** 
(0.082) 

 

-0.333*** 
(0.082) 

 

Gijt

 

 

  -0.139 
(0.117) 

 

-0.229** 
(0.102) 

 

Ojt-1

  0.874*** 
(0.176) 

 

0.239*** 
(0.017) 

 

0.840*** 
(0.179) 

 

Zijt-1

 

 

 0.220*** 
(0.032) 

 

0.256*** 
(0.039) 

 

0.221*** 
(0.033) 

 

Dijt-1

 

 

0.143*** 
(0.015) 

 

0.149*** 
(0.015) 

 

0.168*** 
(0.016) 

 

0.135*** 
(0.016) 

 

Pijt-1

 

 

 

0.093* 
(0.051) 

 

0.111** 
(0.050) 

 

0.096 
(0.063) 

 

0.097* 
(0.051) 

 

SAijt

 

 

-0.006 
(0.030) 

 

-0.005 
(0.028) 

 

0.004 
(0.018) 

 

-0.000 
(0.023) 

 

Sit

 

 

-0.004 
(0.011) 

 

0.008 
(0.011) 

 

-0.005 
(0.010) 

 

0.016 
(0.011) 

 

Constant 0.884*** 
(0.301) 

-10.457*** 
(2.371) 

-2.304*** 
(0.319) 

-10.144*** 
(2.411) 

Firm Fixed Effects Y Y Y Y 

Year Fixed Effects Y Y Y Y 

Therapeutic Market Fixed 
Effects 

Y Y N Y 

Log Likelihood -2242.11 -2210.90 -2565.95 -2200.67 

N 3,919 3,919 3,919 3,919 

Standard errors in parentheses (Adjusted standard errors for Model 1 (Woolridge 1999)). 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 6.CASE STUDY OF ANTI-EPILEPTIC DRUGS (ATC N5) 

 

VARIABLES 

  

NBREG NBREG NBREG NBREG 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 

Iijt

 
Iijt

 
Iijt

 
Iijt

 

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

GPijt

 

 

  -1.630*** 
(0.167) 

 

0.156 
(0.330) 

 

Gijt

 

 

  0.442 
(0.587) 

 

-0.023 
(0.366) 

 

Ojt-1

  -0.238 
(0.269) 

 

-0.230 
(0.250) 

 

-0.188 
(0.171) 

 

Zijt-1

 

 

 0.423*** 
(0.135) 

 

0.290** 
(0.117) 

 

0.141** 
(0.062) 

 

Dijt-1

 

 

0.137*** 
(0.034) 

 

0.445*** 
(0.045) 

 

0.288*** 
(0.039) 

 

0.116*** 
(0.037) 

 

Pijt-1

 

 

-0.036 
(0.100) 

 

0.464*** 
(0.156) 

 

0.561*** 
(0.144) 

 

-0.084 
(0.104) 

 

SAijt

 

 

-0.335 
(0.533) 

 

0.214 
(0.714) 

 

0.922 
(0.652) 

 

-0.398 
(0.623) 

 

Sit

 0.021 
(0.016) 

 

0.062*** 
(0.014) 

 

0.115*** 
(0.015) 

 

0.026 
(0.020) 

 

Constant 
  

-14.68 
(454.7) 

2.508 
(4.558) 

2.958 
(4.237) 

4.129 
(2.858) 

Year Fixed Effects Y Y Y Y 

Firm Fixed Effects Y N N Y 

Log Likelihood -426.29 -719.46 -669.94 -423.74 

N 620 620 620 620 

Standard errors in parentheses (Adjusted standard errors for Model 1 (Woolridge 1999)). 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 7.CHANGE IN THE NATURE OF INNOVATION: ORDERED LOGIT 

 

VARIABLES 

  

MODEL 1 MODEL 2 MODEL 3 

dum(CIijt-BIijt)
 

dum(CIijt-BIijt)
 

dum(CIijt-BIijt)
 

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

COEFF                

STD. ERROR            

GPijt

 -2.062*** 
(0.044) 

 

-2.070*** 
(0.045) 

 

Gijt

 -0.082 
(0.146) 

 

-0.063 
(0.147) 

 

Ojt-1

 0.006** 
(0.002) 

 

0.030*** 
(0.002) 

 

0.030*** 
(0.002) 

 

Zijt-1

 3.111*** 
(0.169) 

 

3.065*** 
(0.188) 

 

3.095*** 
(0.191) 

 

Dijt-1

 1.161*** 
(0.058) 

 

1.164*** 
(0.058) 

 

1.162*** 
(0.058) 

 

Pijt-1

 -0.754*** 
(0.072) 

 

-0.974*** 
(0.073) 

 

-0.963*** 
(0.073) 

 

diffSAijt

 -0.001*** 
(0.000) 

 

-0.001*** 
(0.000) 

 

-0.001*** 
(0.000) 

 

Sit

 0.018* 
(0.010) 

 

0.018* 
(0.010) 

 

0.021** 
(0.010) 

 

Constant -17.520 
(174.700) 

-15.870 
(71.480) 

-15.11 
(49.53) 

Firm Fixed Effects Y Y Y 

Year Fixed Effects Y Y Y 

Therapeutic Fixed Effects Y Y Y 

Year*Therapeutic Fixed Effects - - Y 

N 31,970 31,970 31,970 

Log pseudolikelihood -18083.096 -16896.315 -16817.51 

Pseudo 
2

R  

 
 

0.320 

 
 

0.364 

 
 

0.367 

   Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 8. CHANGE IN THE NATURE OF INNOVATION: OLS 

 

VARIABLES 

  

MODEL 1 MODEL 2 MODEL 3 

dum(CIijt-BIijt)
 

dum(CIijt-BIijt)
 

dum(CIijt-BIijt)
 

COEFF                

STD. ERROR            

COEFF                         

STD. ERROR             
COEFF                

STD. ERROR            

GPijt

 
 -0.373*** 

(0.008) 
 

-0.374*** 
(0.008) 

Gijt

 
 0.006 

(0.025) 
 

0.010 
(0.025) 

 

Ojt-1

 
0.001 

(0.000) 
 

0.005*** 
(0.000) 

 

0.005*** 
(0.000) 

 

Zijt-1

 
0.302*** 
(0.014) 

 

0.273*** 
(0.014) 

 

0.276*** 
(0.014) 

 

Dijt-1

 
0.109*** 
(0.004) 

 

0.105*** 
(0.004) 

 

0.105*** 
(0.004) 

 

Pijt-1

 
-0.065*** 

(0.011) 
 

-0.094*** 
(0.010) 

 

-0.094*** 
(0.010) 

 

diffSAijt

 
-0.000*** 

(0.000) 
 

-0.000*** 
(0.000) 

 

-0.000*** 
(0.000) 

 

Sit

 
0.002 

(0.002) 
 

0.002 
(0.002) 

 

0.003 
(0.002) 

 

Constant 3.104*** 
(0.022) 

2.954*** 
(0.020) 

2.927*** 
(0.047) 

Firm Fixed Effects Y Y Y 

Year Fixed Effects Y Y Y 

Therapeutic Fixed Effects Y Y Y 

Year*Therapeutic Fixed Effects - - Y 

N 31,970 31,970 31,970 

R-squared 0.379 0.426 0.430 

     Robust standard errors in parentheses 

      *** p<0.01, ** p<0.05, * p<0.1 

 


