Extracting and Formatting Patent Data from USPTO XML

Gabe Fierro

College of Engineering
University of California, Berkeley

Fung Technical Report No. 2013.06.16
http://www.funginstitute.berkeley.edu/sites/default/files/Extracting_and_Formatting.pdf

June 16, 2013
The Coleman Fung Institute for Engineering Leadership, launched in January 2010, prepares engineers and scientists – from students to seasoned professionals – with the multidisciplinary skills to lead enterprises of all scales, in industry, government and the nonprofit sector.

Headquartered in UC Berkeley’s College of Engineering and built on the foundation laid by the College’s Center for Entrepreneurship & Technology, the Fung Institute combines leadership coursework in technology innovation and management with intensive study in an area of industry specialization. This integrated knowledge cultivates leaders who can make insightful decisions with the confidence that comes from a synthesized understanding of technological, marketplace and operational implications.

Lee Fleming, Faculty Director, Fung Institute

Advisory Board

Coleman Fung
Founder and Chairman, OpenLink Financial

Charles Giancarlo
Managing Director, Silver Lake Partners

Donald R. Proctor
Senior Vice President, Office of the Chairman and CEO, Cisco

In Sik Rhee
General Partner, Rembrandt Venture Partners

Fung Management

Lee Fleming
Faculty Director

Ikhlac Sidhu
Chief Scientist and CET Faculty Director

Robert Gleeson
Executive Director

Ken Singer
Managing Director, CET
Abstract: We describe data formatting problems that arise from extracting useful and relevant data from the XML files distributed by USPTO. We then describe solutions for a consistent data schematic that dictates in what format the extracted data fields should be stored and how these transformations should be applied to the data.
1 Introduction

The patent data available through the United States Patent and Trademark Office (USPTO) is formatted as Extensible Markup Language (XML) and is an excellent source of patent data, but is limited in its utility for statistical research by a collection of idiosyncrasies that affect how the data may be understood. An effective parser for this data must be made aware of such inconsistencies and deficiencies so as to provide pristine and operable output.

The main goal of our parser is to create a cleaner, more modular solution to the above problem. We want to make it easy to extract the data we want, and facilitate further extensions on the parser so that we can apply it to new data sources and adapt the output to new destinations. Furthermore, we want to extract data in a consistent matter, agreeing upon standards regarding text encodings, string formatting, order of tags, and other relevant issues.

A good parser will extract data in a form as close as possible to the original, decreasing the chance that our process will add noise to the data. By standardizing the process by which we extract relevant information from our raw data, we can be more confident in the detail of that data. A high level of detail is vital to the accuracy and effectiveness of the disambiguation algorithm, which uniquely identifies inventors and is one of the primary applications of the patent data.

2 Parsing Toolchain and Data Process

Considering the large volume of data we are addressing and the fact that new data is available on a weekly basis, it is imperative to have a robust and pinelined process for putting the data in a useable state.

We draw our raw patent data from three separate sources: the Harvard Dataverse Network (DVN) collection of patent data from 1975 through 2010 [2], the patent data used in the National Bureau of Economic Research (NBER) 2001 study covering patent data from 1975 through 1999 [1] and more recent patent grant data pulled from weekly distributions of Google-hosted USPTO records [7]. The DVN and NBER data are available as SQLite databases, having already been catalogued. The raw data we pull from Google arrives as concatenated XML files, and must be parsed before it can be cleaned and enhanced with features such as geocoding (associating latitude and longitude with assignees, inventors and the like). For source URLs, please consult the appendix.

![Diagram of data pipeline]

Figure 1: Basic view of data pipeline for processing patent data
After the raw XML has been parsed, the data is cleaned and enhanced and then merged into the final database along with the NBER and DVN data.

3 Text Format and Encoding

Online distribution of data involves an awareness of the various datatypes used to disseminate information, to wit, XML and HTML. In packaging data for such distribution, resolution is usually sacrificed. Accents, brackets and other extraordinary characters must be encoded or “escaped”, sometimes in non-obvious or non-standard ways.

3.1 HTML Idioms and Escaping

The downloaded patent data uses UTF-8 encoding and is packaged in valid XML documents. There are several Document Type Definitions (DTDs) used by USPTO that comprise the collections of XML documents we download, but it appears that the most recent one has been used since about 2005. This means that when dealing with recent data, the data formatting decisions outlined here will apply to a large subset of the data we will be using. The fact that USPTO distributes valid XML means that our parser can be built upon an easily extensible base such as the Python 2.x xml.sax module [3], which handles UTF-8 encoding and unescapes the following HTML entities:

<table>
<thead>
<tr>
<th>Name</th>
<th>Character Literal</th>
<th>Escape Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampersand</td>
<td>“&”</td>
<td>&</td>
</tr>
<tr>
<td>emdash</td>
<td>“—”</td>
<td>–</td>
</tr>
<tr>
<td>left angle bracket</td>
<td>“<”</td>
<td><</td>
</tr>
<tr>
<td>right angle bracket</td>
<td>“>”</td>
<td>></td>
</tr>
</tbody>
</table>

It is appropriate to keep all HTML escaped, but this can be easily achieved through the escape method found in Python’s built-in cgi module.

An effort should be made to make the parsed text as human-readable as possible while still maintaining the safety of escaped HTML, including the translation of idioms such as `_{—}` (an underscore) to their character literals if doing so does not conflict with the additional goal of HTML escaping, defaulting to the Unicode encodings if we are unsuccessful.

3.1.1 Takeaways

We will use Python’s `cgi.escape` method [4] to convert inner tags (HTML tags that appear within the XML structure) to be HTML-safe. This will help with distribution. We will also maintain UTF-8 text encoding by normalizing the strings we extract from the XML documents by using Python’s `unicodedata.normalize` method with the NFC option [5].

3.2 Escape Sequences

Naive parsers will sometimes preserve the raw escape characters in the outputted strings, e.g. `\r,\n` and `\t`. These are not essential to the semantic content of the tags we are extracting, especially since the tags that do contain these escape sequences are not used in critical applications such as the disambiguation.
Currently, the escape sequences only appear in the results from our original production parser because the parser uses Python’s built-in methods such as `toxml()` and then removes tags using regular expressions. Resolving to a standard of removing all escape sequences will help avoid confusion when using string comparison to identify elements of patents, as most string comparison engines take into account “invisible” characters such as escape sequences.

3.3 Combined Database Inconsistencies

When combining the data from USPTO’s XML repository with historical data from DVN [2] and data from the NBER [1], a surprising range of inconsistencies arises in regards to which ASCII sequences are used to represent general patterns such as accents.

We have encountered the following inconsistencies across names alone:

1. Missing accented letters: “Rémy” becomes “R my”
2. Described accented letters: “Rémy” becomes “R acute over e my”
3. Missing accents on accented letters: “Rémy” becomes “Remy”
4. Correctly accented letters: “Rémy”

The NBER data is consistent in dropping accents from the letters, and while this is the most preferred of the 3 errors listed above, it is not optimal. It is entirely possible to represent accented characters given the right ASCII sequences, and an attempt should be made to standardize that. The preservation of accents and other special ASCII characters is automatically handled by the Python’s `unicodedata.normalize` method with the `NFC` option. By normalizing to UTF-8, we can avoid the accent problems by keeping the accents. This will require normalizing all of our historical data, as well as some more intensive work on the NBER data.

Another inconsistency between the combined databases mentioned above is the association of last name prefixes such as “van der” and “de”. Because the first names and last names of inventors are stored as separate columns in our databases, which field these prefixes are associated with is vital to the correctness and consistency of any future queries.

The NBER data is consistent in associating these prefixes with the beginning of the last name, but the historical DVN data sometimes affiliates the prefixes with the end of the first name.

The standard by which we will coerce our data is the association of such prefixes with the beginning of the last name. This can be easily achieved by splitting the first name field on spaces, and migrating all words after the first to the last name field.

Relatedly, there are varying degrees of punctuation found in the combined database. Hyphens are often omitted from names, which is a design decision incompatible with our desire to associate prefixes with the last name field; replacing hyphens with spaces will turn names such as “Sasson, Michael-David” into “David Sasson, Michael.” Hyphens should be preserved to maintain correctness. Other types of punctuation, e.g. periods and commas, can most likely be ignored as they do not facilitate the specification of a given individual.

3.4 Document Numbers

The easiest and most straightforward way to uniquely identify a given patent is by its document number, which is a unique number assigned to applications that have been issued patents. Document number comparisons are used for such operations as counting up forward and backward...
citations. Obviously, a consistent format for document numbers is imperative for any such operation on the data. Because the combined database encompasses such a large range of years, the data itself is nuanced by subtle changes in the various USPTO DTDs. Document numbers may contain commas, character prefixes, or extraneous padding 0s. Indeed, our own database contains multiple versions of the same document number. Inconsistencies arise between repositories of patents as well, making it difficult to establish ground truths between disparate databases. The USPTO’s own website omits leading zeros and includes commas when displaying numbers, but the downloaded XML files appear with leading zeros but without the interspersed commas, e.g. “123,456” versus “0123456”.

Non-utility patents have character prefixes that are useful for identifying the type of document (see table). Fortunately, these prefixes are fairly consistent across databases, and are easily removed for comparison with databases that do not include the character prefixes.

To cut down search time, it would be ideal to avoid having to conduct a search for both the padded and unpadded versions of a given patent number. This presents us with two options: adding the leading 0 to all US patents, or removing the leading 0.

In examining the databases, there are 70496082 patents with the leading 0, and only 275554 without, at the time of writing. Adding a leading 0 to all patents would solve the local consistency issue with a minimal amount of reprocessing of the existing databases, but would fail to solve compatibility with other repositories (that do not contain the leading 0) without additional reprocessing of the entire database.

It makes more sense to remove the leading 0 from these patents; then, the patent document numbers would be standardized without any superfluous bytes. There is no obvious rationale for maintaining the leading 0, and eliminating it would provide for easy cross-checking with external repositories. Though this approach requires more reprocessing of the current data, this one-time cost is worth the benefits.

4 Acknowledgements

We would like to thank the Fung Institute for Engineering Leadership for supporting this research. This work is funded by the National Science Foundation under grant 1064182.

References

Appendix: Data Sources and Code Repository

The NBER data is available at http://www.nber.org/patents/.
The DVN data is available at http://dvn.iq.harvard.edu/dvn/dv/patent/faces/study/StudyPage.xhtml;jsessionid=fd8595bd5c692dce0bef4ed95108?globalId=hdl:1902.1/15705&studyListingIndex=0_fd8595bd5c692dce0bef4ed95108.
The USPTO data is available at http://www.google.com/googlebooks/uspto-patents-grants-text.html.
The parsing code and the patent processor toolchain can be found on Github at https://github.com/funginstitute/patentprocessor/
Links to our merged database can be found at https://github.com/funginstitute/downloads.