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While the course of technological change is widely accepted to be highly uncertain

and unpredictable, little work has identified or studied the ultimate sources and

causes of that uncertainty. This paper proposes that purely technological uncertainty derives

from inventors’ search processes with unfamiliar components and component combinations.

Experimentation with new components and new combinations leads to less useful inventions

on average, but it also implies an increase in the variability that can result in both failure

and breakthrough. Negative binomial count and dispersion models with patent citation data

demonstrate that new combinations are indeed more variable. In contrast to predictions,

however, the reuse of components has a nonmonotonic and eventually positive effect on

variability.

(Invention; Search; Recombination; Negative Binomial Dispersion Model)

Introduction
While many have acknowledged the pervasive

uncertainty of technological change (Rosenberg 1996),

the ultimate sources of that uncertainty remain poorly

understood. Many scholars in the product life-cycle

tradition have observed that uncertainty peaks early

and decreases following convergence on a dominant

design (Anderson and Tushman 1990, Klepper 1997).

Radical and destabilizing change and the sources of

the life cycle are particularly difficult to predict and

often attributed to luck or individual genius (Tushman

and Anderson 1986, Ayres 1988, Mokyr 1990). Clark

(1985) proposes that technologies evolve and uncer-

tainty decreases as inventors iterate between the needs

of customers and the technological logic of their cur-

rent trajectory. Much research remains agnostic about

the causal sources of uncertainty and simply models

it as stochastic draws (Nelson and Winter 1982, Klep-

per 1996). Proponents of bounded rationality often

characterize technological change as an intrinsically

uncertain and, to varying degrees, blind search pro-

cess (Nelson and Winter 1982, Vincente 1990, March

1991). While the assumptions of bounded rational-

ity may be more accurate than those of classical eco-

nomics, the metaphor of search remains informal and

was only recently developed empirically (Stuart and

Podolny 1996). Despite this widespread acknowledg-

ment of the importance of uncertainty, most research

gives the topic brief consideration en route to other

issues, and little work has attempted to identify and

empirically validate the causal sources of uncertainty.

Part of the difficulty in explaining the ultimate

source of uncertainty is the conceptual and empiri-

cal conflation of its many sources, and, in particular,

technological invention and commercial innovation.

There exist many causes of uncertainty in techno-

logical change besides purely technological sources,

including the adoption and diffusion of new technolo-

gies, market and customer acceptance, and competi-

tors’ strategic actions (Rosenberg 1996). Arguments for

intentional conflation of these sources notwithstand-

ing (Ruttan 1959), our confusion could be reduced

by returning to the classic differentiation between

technological invention and commercial innovation.

Schumpeter (1939) defined innovation as the com-
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mercial application or adoption of an invention.
He argued that, “the making of the invention and

the carrying out of the corresponding innovation are,

economically and sociologically, two entirely differ-

ent things” (p. 85). While these sources remain inter-

dependent, their conflation confuses our explanations

of their respective processes and contributions to

uncertainty. To avoid such confusion, this paper will

focus on invention and purely technological sources

of uncertainty.

Attempts to understand the source of technological

uncertainty have also been frustrated by a lack of

understanding of the process by which inventors

create new technologies. A theory of the process

of invention would facilitate our understanding of

the sources of technological uncertainty. To address

this issue, this paper synthesizes two classic perspec-

tives on the sources of technological novelty: first,

invention is a process of recombination, and, second,

invention is indeed an inherently uncertain and, there-

fore, typically local search process.

Invention As a Process of
Recombinant Search
Many scholars have proposed that recombination pro-

vides the ultimate source of novelty (Gilfillan 1935,

Usher 1954). Schumpeter (1939, p. 88) observed that

“innovation combines components in a new way,

or that it consists in carrying out New Combina-

tions.” Nelson and Winter (1982, p. 130) state that

“the creation of any sort of novelty in art, science,

or practical life—consists to a substantial extent of

a recombination of conceptual and physical materi-

als that were previously in existence.” Henderson and

Clark (1990) argue that the mere rearrangement of

previously used components can itself cause destabi-

lizing industrial change. Hargadon and Sutton (1997)

describe how a design consulting firm creates nov-

elty by brokering ideas and technologies between their

clients’ industries.1 Basalla (1988) develops an analogy

1 While the concept of recombinant search as the source of novelty

may well apply outside the strictly focused realm of invention—

indeed, to cuisine, innovation (Abernathy and Utterback 1978,

Kogut and Zander 1992, Levinthal 1998), and process improvement

(Romer 1993)—I can only comment empirically on invention.

from Kroeber’s (1948) image of a tree of cultural

artifacts. Unlike genetic trees, however, the branches

of the tree of technology can fuse together. “Separate

types or branches fuse together to produce new types,

which merge once again with still other branches”

(Kroeber 1948, p. 138). Similar to the theory of natural

evolution before the discovery of DNA, the analogy

breaks down at the genetic level. “We who postulate

theories of techological evolution likewise have our

Darwins but not our Mendels” (Kroeber 1948, p. 210).

Although the idea of recombination as the source of

novelty has been widely discussed, the implications of

the idea remain undeveloped. Previous work suggests,

however (Schumpeter 1939, Henderson and Clark

1990), that an invention can be defined as either a

new combination of components or a new relationship

between previously combined components. While

knowledge, science, algorithms, culture, applications,

and manufacturing processes also influence invention,

they are not part of an actual artifact and are not

actually instantiated in an invention. They strongly

influence the process of inventive search, however,

by inspiring, aiding, explaining, or constraining the

use of particular components or combinations. Collo-

quial usage of the word “components” implies known,

available, and commercially available hardware. In

this paper, however, “components” will denote the

constituents of invention, along the lines of what

Schumpeter calls “factors” (1939, p. 88).

The Scope of Potential Recombination
Even though the number of potential components

overwhelms the imagination, there are no restrictions

on the scope of their recombination. Components are

not like genes and “similar” technologies are not

like species (Basalla 1988). In contrast to variation

processes within genetically isolated populations,

inventors can recombine any components within their

purview. Perceptions that certain technologies or com-

ponents “belong together” develop through social

construction and previous association. For example,

if an electrical engineer of the 1940s had been asked

about his profession’s use of sand and aluminum,

he probably would have replied with a blank stare.

Today, he or she probably would reply that they are

the most common basic materials of semiconductors
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and the focus of much research investment. Clearly, no

technology evolves independently of the entire world

of made things. At any point in technological evolu-

tion, any component is at risk of being recombined

with any other component. The made world evolves

as a holistic, continuous, and interdependent web, and

not as a disjoint assortment of separate trajectories or

product life cycles.

Investors constantly import previously untried

components from outside the extant made world,

for example, the use of medicinal substances from

tropical jungles or the exploitation of petroleum and

natural gas, substances that had little application to

technology prior to the 19th century. Investors also

create new components through encapsulation and

hierarchical modularization of component sets (Simon

1996, Baldwin and Clark 1999). Such “black box” engi-

neering efforts make the underlying components less

salient but do not destroy the recombinant potential

of the components or the encapsulating module. As

these processes make additional components available

for further recombination, the diversity of the “made”

world increases. Because all previously used compo-

nents and inventions provide potential constituents

for future inventions, the potential risk set for recom-

bination is the entire extant made world. Because

inventors also scan outside the made world, anything

not yet derived from the natural world can also be

considered as a potential constituent of invention, as

part of the theoretical risk set. Recombination usually

occurs, however, between components that are salient,

proximal, and available for the inventor.

These ideas prompt us to look backward in time

to consider the components and untried combinations

that were available at the time of invention; they

prompt us to look forward to predict which inven-

tions are more likely to motivate further recombi-

nation. Prediction of further recombination depends

on the fundamental tension between exploration of

untried possibilities and exploitation of previous suc-

cesses (March 1991).

Cognitive, Social, and Technological
Influences on Recombination
Because the agents of recombination are people,

the process of invention remains strongly influenced

by cognitive and social phenomena. The most

fundamental influence is a limitation on the num-

ber of potential components and combinations that an

inventor can simultaneously consider. Because every

invention can be incorporated in further recombina-

tions, inventors’ combinatoric potential has grown

explosively (Weitzman 1996). The set of potential com-

binations and, a fortiori, the possible ways that each

set of potential combinations can be combined has

become essentially infinite. It has become impossible

for individual inventors, groups, even entire commu-

nities of inventors to have more than an infinitesimal

understanding of all these potential combinations

and relationships. As a result of this combinatoric

explosion, inventors and their organizations and

communities must focus and recombine locally from

a limited set of components and combinations.

These arguments follow the assumption of bounded

rationality and local search (March and Simon 1958,

Nelson and Winter 1982, Cohen and Levinthal 1990,

March 1991, Kauffman 1993, Stuart and Podolny

1996). Localness corresponds to inventors’ familiar-

ity with their recombinant search space. Local search

or exploitation (March 1991) occurs when an inven-

tor recombines from a familiar set of technology

components or refines a previously used combina-

tion. A pastry chef searches extremely locally when

he mixes previously used dyes in a new propor-

tion to create a novel frosting color. Distant search

or exploration (March 1991) occurs in the opposite sit-

uation, when inventors try completely new compo-

nents or combinations. The early auto industry pro-

vides many examples of successful and unsuccessful

distant search including various power sources, pneu-

matic tires, brakes for each passenger, four-wheeled

diamond configurations, and, in the 1930s, a combined

car and plane configuration (Basalla 1988).

One would expect that local recombination is more

certain and, on average, more successful. To the

extent that inventors draw from familiar compo-

nent sets and refine previous combinations, they are

less likely to develop a completely useless invention.

They also decrease their upside potential, however,

of developing a radically different invention that is

of much greater impact. Local recombination is more

certain because inventors learn from past failures.
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Inventors learn which components failed in previ-

ous inventions and stop using them. They learn to

avoid the combinations and architectures that failed

in the past. They winnow and bound the less suc-

cessful regions of recombinant space (Vincenti 1990).

This winnowing and bounding improves the average

usefulness of inventive efforts but also decreases the

possibility of wildly successful inventions.

As inventors reuse components they begin to

understand and characterize those components. They

begin to understand which components are more

or less useful in different contexts. Such knowledge

enables selection and exploitation of more appropriate

components in future inventions. Understanding and

knowledge increase with use; the greater the use of a

component, the greater the knowledge of and famil-

iarity with it. Knowledge can also be forgotten, how-

ever, and is therefore more potent the more recently it

has been gained (Argote et al. 1990). More recent and

frequent usage therefore implies greater knowledge

and familiarity. Inventions that incorporate familiar

components should be more useful because inventors

can select more appropriate components. Because they

can better predict the performance of the included

components, incorporation of familiar components

should also decrease inventive uncertainty and, hence,

the variability of outcomes.

Inventors can draw on others’ knowledge and

experience in addition to their own. While social prox-

imity certainly increases the ease and likelihood of

sharing, knowledge about component use will still dif-

fuse between organizations (Allen 1977) and techno-

logical communities (Bijker 1987). Many mechanisms

facilitate knowledge diffusion, including person-

nel movement, personal friendships, organizational

merger, education, reverse engineering, technical liter-

ature, and strategic alliances (Ahuja 2000). Although

much knowledge will be lost or changed in its dif-

fusion, sharing will take place at all social levels,

between individuals, organizations, and communities.

Taken together, these arguments imply the following.

Hypothesis 1. Recombination of familiar components
will increase an invention’s usefulness.

Hypothesis 2. Recombination of familiar components
will decrease inventive uncertainty.

Parallel arguments hold for the refinement and

improvement of combinations. Engineers gain expe-

rience with particular combinations by using them.

As inventors learn which combination relationships

or architectures are less useful, they avoid those

approaches. Such learning and knowledge helps

them improve their inventive efforts on average and

decrease inventive uncertainty. As with knowledge

about individual components, knowledge about com-

bination relationships increases with frequency of use

and decreases since last use. As with individual com-

ponents, knowledge of combinations and their opti-

mal relationships will diffuse throughout the made

world. These arguments imply combination hypothe-

ses that parallel the individual component hypotheses.

Hypothesis 3. Refinement of familiar combinations
will increase an invention’s usefulness.

Hypothesis 4. Refinement of familiar combinations
will decrease inventive uncertainty.

Practitioners have long recognized the value of

reuse and refinement (Mead and Carver 1980) and the

difficulty of exploring new regions of the essentially

infinite design space. For example, Altschuler (1998)

explicitly recommends searching previous inventions

for universal analogies and possible applications to

new contexts, and Goldenberg et al. (1999) propose

and empirically validate a method to identify and

link profitable dependencies between previously used

components. Unfortunately for inventors, however,

these benefits of familiarity do not last forever. This

results from the technological and social-psychological

exhaustion of potential refinements, given a particular

combination. Both influences run counter to the posi-

tive effects of local search.

Technological exhaustion occurs because most of

the possible relationships between a set of compo-

nents have already been tried. As Kim and Kogut

(1996) argue, “The repeated application of a particular

set of technologies or organizing principles eventually

exhausts the set of potential combinations.” The argu-

ment generalizes Sahal’s (1985) demonstration of the

decreasing returns to physical scaling. For example, if

semiconductor inventors restricted their usage to their

original materials of aluminum and bipolar transis-

tors, progress in the field would have halted long ago.
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However, because inventors began using new materi-

als such as copper interconnect and new combinations

such as metal oxide semiconductors, semiconductor

chips have continued to shrink and the trajectory has

repeatedly avoided exhaustion.

Exhaustion in technological potential also stems

from social and psychological sources and can ulti-

mately be traced to inventors’ frames and “imagi-

nary life cycles” (Henderson 1995). If a community of

inventors accepts or reifies a particular combination as

mature, then they are less likely try new combinations

or broaden their component set. Henderson describes

three such attitudes in her study of the premature

obituaries for optical lithography in 1977: Inventors

failed to consider the possibility of new architec-

tures, improvement in their components, or changes

in users’ application of the technology. These tech-

nological and social-psychological effects run counter

to the improvement that results from familiarity and

learning.

Hypothesis 5. Cumulative use of a combination will
decrease an invention’s usefulness.

Methods
Thinking of invention as a recombinant search pro-

cess implies that an invention’s usefulness and uncer-

tainty can be predicted from previous usage of its

components and particular combination of compo-

nents. I test these ideas with patent data and estima-

tion of a statistical model. The models predict future

prior art citations to a given patent based on previous

usage of its assigned subclasses and particular combi-

nation of subclasses. The hypotheses place additional

constraints on the empirical work, however. If engi-

neers can recombine any technology with any other,

the data should include recombination across techno-

logical communities. If invention is a process of search,

learning, and exhaustion, the data should include the

history of component and combination use. Finally,

if the uncertainty of invention decreases with learn-

ing and the use of familiar components and combina-

tions, the statistical model should estimate the impact

of such learning and familiarity on the variability of

inventive outcomes.

Data
The unit of analysis is an U.S. patent granted dur-

ing May or June of 1990 �n= 17�264�.2 The data came

from the MicroPatent (1996) product. While patent

data are admittedly imperfect records of technology

(Levin et al. 1987) and conditional on a successful

patent application, these data still represent a large

portion of failed and successful invention. Indepen-

dent measures (recombinant history) came from data

before July of 1990 and dependent measures (citations)

came from data after July 1, 1990. Citations are used

as controls and a dependent variable only—they are

not used to trace the path of combination reuse, learn-

ing, or the diffusion of knowledge. The design is cross-

sectional and does not consider multiple time periods.

While the sample is large enough to provide very sig-

nificant results for all the hypothesis tests, future work

should consider other time periods to minimize the

chances of idiosyncratic sampling.

I observe recombination across all technological

communities by looking simultaneously at all patents

granted during the two-month time period, thus sat-

isfying the first modeling constraint. If the data did

not consider all communities simultaneously, I would

need to define the boundaries between particular

technological communities. Because such boundaries

are transient, permeable, overlapping, and nested, it

would be empirically intractable to determine them

for even a fraction of the made world. Finally, two

hundred years of patent data satisfy the need to

observe recombinant history of component and com-

bination use.

Measures
Table 1 lists and describes all variables. For the depen-

dent variables of mean and variance, I measure an

invention’s usefulness as the number of prior art cita-
tions that it receives from subsequent patents. To be

granted a patent, the applicant must establish the nov-

elty of her invention relative to all previous inventions.

She establishes her claim to novelty by identifying

(almost always after the fact of invention) and citing

similar “prior art.” The patent examiner then reviews

and usually supplements these citations (Carr 1995).

2 I chose the months of May and June at random.
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Table 1 Description of Variables

Variable Type Description Measure

Citations dependent invention’s usefulness or importance prior art citations by future patents to focal patent

Mean technology control expected citations to technically similar patents weighted fixed effects by focal patent’s sub-class
membership in class

Variance technology control expected variance in citations to technically similar
patents

weighted fixed effects by focal patent’s sub-class
membership in class

Number of prior art citations control patents that cite more heavily should be more
heavily cited

number of prior art citations by focal patent

Single-class dummy control process of recombination is finer grained than can
measure

equals 1 if focal patent assigned to only one subclass

Number of subclasses control number of invention’s components number of focal patent’s subclasses

Newest subclass control artifact of patent classification system equals the minimum number of previous uses
amongst the focal patent’s sub classes

Number of classes control breadth of patent classifications number of focal patent’s classes

Component familiarity independent inventor’s familiarity with components of the
invention

recent and frequent usage of focal patent’s subclasses
across all U.S. patents

Combination familiarity independent inventor’s familiarity with particular combination
of components

recent and frequent usage of particular subclass com-
bination across all U.S. patents

Cumulative combination usage independent cumulative number of inventive trials with exactly
same combination

cumulative number of U.S. patents with exactly same
subclass combination

Bibliometric studies have repeatedly demonstrated

that future prior citations to a patent correlate with

its technological importance and value (Albert et al.

1991, Hall et al. 2000). To make maximal use of the

data, I measure prior art citations to a focal patent for

6 years and 5 months after its granting. This period

should capture the bulk of citations to a patent as these

citations typically reach a plateau after about three

years from the grant date (Jaffe et al. 1993). While there

appears to be strong correlation between the rates of

early and later citations to a patent, researchers are

actively pursuing the topic (Hall et al. 2000).

To measure the independent variables, I proxy com-

ponents with patent subclasses. The patent office cat-

egorizes all patentable technologies into some 400

“class references”. Each class is also subdivided into

very fine divisions of technology or approximately

100,000 “subclasses” (Trajtenberg et al. 1997). The

patent office typically assigns each patent into mul-

tiple subclasses within and across major classes. The

patent office also establishes and updates new classes

and subclasses each year, as technology changes (Carr

1995, p. 128). This retrospective updating enables

historical consistency in the measurement of compo-

nents across time.

I do not propose that inventors recombine patent

subclasses directly, only that subclasses can be used

to observe indirectly the process of recombinant

search and learning. I will illustrate the correspon-

dence between components and patent subclasses

with patent 5,136,185, coauthored with John Walther.

It was (as of Dec. 1996) classified in four subclasses:

326/16 (with test facilitating feature), 326/31 (signal

sensitivity or transmission integrity), 326/56 (tristate

(i.e., high impedance as third state)), and 326/82

(current driving (e.g., fan in/out, off chip driving,

etc.)). Each of these subclasses corresponded to a

well-understood digital hardware component at that

time. Each of them can be found in (and, for this

patent, were drawn specifically from) contemporary

textbooks of digital design such as McCluskey (1986).

A test facilitate feature (p. 426) has become a neces-

sity with large computer chips due to their millions

of gates. To test the innards of a chip, the chip must

be operated in a “test mode.” A transmission gate

(p. 118) simply passes on a signal when enabled.
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A tristate driver (back cover diagram of digital com-

ponents and pp. 105, 119, 142) is a gate that can drive a

bus or be turned off to present high impedance to the

bus. Finally, “fan in” and “fan out” (p. 104) refers to

the number of components that can drive or be driven

by a particular gate (high fan out basically means a

big gate). While we were not aware of the subclass

definitions at the time of the invention, we were very

familiar with these basic building blocks of our tech-

nological community, namely digital hardware engi-

neers. I propose that subclasses serve as proxies for

these building blocks.

With the subclassifications and date of application

of each patent (interpolated prior to 1975), I develop

the three independent variables for each focal patent:

component familiarity, combination familiarity, and

cumulative combination usage. Component familiarity
proxies inventors’ familiarity with components, based

on the average degree to which the components have

been recently and frequently used. The assumption

is that inventors will be more familiar with compo-

nents that have been recently and frequently used.

I first calculate an individual measure for each sepa-

rate subclass of the focal patent. To the extent that a

particular subclass has been recently and frequently

used, its individual measure will be higher. For each

focal patent, I look backward to 1790 and consider

each of its individual subclasses in turn. Whenever

a particular subclass has been used in any previous

invention, I multiply the indicator of occurrence by

an exponentially decaying component (1). This expo-

nential component represents the loss and forgetting

of knowledge. For example, it is more likely that an

inventor will have learned from previous use of a

subclass, if that sub-class was used three years prior,

instead of thirty. These occurrences are then summed

and averaged (2).

Individual component familiarity of patent i’s

subclass j ≡

Iij =
∑

all patents k granted

before patent i

1� patent k uses subclass j� (1)

× e−
(
application date of patent i− application date of patent k

time constant of knowledge loss

)
�

Average component familiarity of patent

i′s subclasses≡ Fi =
∑

all subclasses

j of patent i
Iij∑

all subclasses

j of patent i
1
� (2)

I set the time constant of knowledge loss at five

years. This constant in the denominator of the expo-

nential implies that approximately one-third of the

knowledge remains after five years, or a yearly loss

rate of 18%. Argote, Epple, and Darr (Argote et al.

1990, Epple et al. 1991, Darr et al. 1995) have estimated

a much higher geometric loss parameter for manu-

facturing and service organizations, between 40% to

97% per year. It is unlikely that design technology

would experience such a high rate of loss, however.

Design knowledge is far less contextual and more eas-

ily articulated than manufacturing or service experi-

ence. Design knowledge is more likely to have been

recorded in trade journals, firm documentation and,

of course, patents. It may have been actually real-

ized in prototypes and products and is far more

likely to have required substantial personal effort and

investment on the part of its designers. All of these

influences would argue for a slower loss rate than

manufacturing and service organizations, but the pre-

cise estimation certainly constitutes a valid research

question.

I calculate combination familiarity and cumulative
combination usage similarly. The cumulative usage

measures how many times since 1790 a particular

combination of subclasses has been used. Combina-

tion familiarity proxies inventors’ familiarity with the

combination, based on the degree to which the com-

bination has been recently and frequently used. For

each focal patent, I consider its particular combina-

tion of subclasses. I then look back in time at all

other patents that used an identical combination of

subclasses. For each previous patent that used an

identical combination of subclasses, I increment the

cumulative combination usage (3). For the combi-

nation familiarity variable, I multiply each indicator

count by the exponential component, to reflect the

loss and forgetting of experiential knowledge regard-

ing the combination (4). All the measures remain indi-

rect because they assume that learning occurs with use

and that knowledge diffuses throughout technological
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communities and the made world. Given that all the

independent variables are highly skewed, I took the

square root of their original value. This minimized

the effects of outliers and enabled more parsimonious

modeling.

Cumulative combination usage of patent i ≡ Ci =
∑

all patents k granted
before patent i

1�patent k uses identical

combination of subclasses

as patent i�

(3)

Combination familiarity for patent i≡Ri=
∑

all patents k granted
before patent i

1�patent k uses identical combination

of subclasses as patent i �

×e
(
application date of patent i − application date of patent k

time constant of knowledge loss

)
(4)

Given the theoretical interest in recombinant search,

the models should ideally control for other differences

between inventions, for example, the differences in

citation patterns across different technology classes.

I calculate technology mean and variance by measuring

citations to a technology class prior to the dependent

measures period. I first calculate the expected num-

ber of citations to each class in the five and a half

years prior to July of 1990 (5). Equation (6) illustrates

similar calculations for the variance of each patent

class. Using these numbers for each class, I control

for the expected mean and variance of citations to

each focal patent based on a weighted average of its

assigned technology class references. I calculate this

by multiplying the proportion of a patent’s subclass

assignments within a particular class by the average

cites/class of that class. As an additional control of

differences in citation activity, I include the number of
prior art citations that a focal patent makes to previous

patents. Although none of these measures differences

across industry directly, in aggregate they provide

some control of nonrecombinant heterogeneity, to the

extent that industries have similar technologies and

citation patterns.

Average citations to a patent classified within class

i ≡ �i =
∑

all patents i granted

from 1985−1990�5

1�patent j cites a patent within class i�

∗�proportion of cited patent within class i�∑
all patents k granted

from 1985−1990

1�patent k classified within class i�

∗�proportion of patent k within class i�

(5)

Variance in citations to patents classified within class

i ≡ �2
i =
∑

all patents k granted

from 1985−1990�5

1�patent k classified within class i�∗ �proportion
of patent k within class i�∗ �citesk−�i�2∑

all patents k granted

from 1985−1990�5

1�patent k classified within class i�

∗�proportion of patent k within class i�

(6)

Given the theoretical assumptions of bounded ratio-

nality and component search, the models should con-

trol for the number of the invention’s components.

These can be proxied by the focal patent’s number of
subclasses. Because it becomes increasingly difficult for

an exact match to occur as the number of compo-

nents increases, I include a second-order term for this

as well.3 Because the recombinant history of patents

with only one subclass remains unobservable, I also

include a dummy variable for single subclass patents
(they comprise 8.1% of the data).

Finally, the models should control for artifacts of

the patenting system. The patent office periodically

updates technology classifications and creates new

subclasses (these analyses use the classifications in

effect as of November 1996). Because such reclassifica-

tion essentially recognizes newly successful technolo-

gies, the first few patents of a retrospectively identified

technology stream are likely to be highly seminal.

Hence, patents that include a newly designated sub-

class will probably be highly cited. I include a newest

3 I would like to thank an anonymous reviewer for this suggestion.

In addition to adding the squared term, I checked the sensitivity

of the results by estimating the model separately on subsets of the

data, for patents classified in two and three subclasses. The results

agreed with those presented below.
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Table 2 Descriptive Statistics for All U.S. Patents, May/June 1990
�n = 17�264�

Variable mean stnd.dev. minimum maximum

citations 3�80 4�88 0�00 82�00

mean tech control 1�19 0�41 0�33 3�03

variance tech control 4�65 2�65 0�36 20�55

number of prior art citations 7�63 6�99 0�00 110�00

single subclass dummy 0�08 0�27 0�00 1�00

number of subclasses 4�21 3�31 1�00 130�00

newest subclass 107�07 103�97 0�00 1874�00

number of classes 1�78 0�95 1�00 12�00

component familiarity 0�60 0�27 0�00 2�28

combination familiarity 0�28 0�75 0�00 11�25

cumulative comb usage 0�62 1�60 0�00 26�76

subclass control variable that equals the minimum of

the least used subclass (for example, if a patent had

three subclasses and each subclass had been previ-

ously used in 56, 2, and 43 patents, the variable would

equal 2). This variable is very similar to the dependent

variable and hence probably decreases the effects of

the independent variables. I also include the number of
classes to which a patent belongs to reduce the effect of
additional citations to a patent, similar to that which

occurs when a scientific paper straddles fields.

Tables 1, 2, and 3 list the variables, descriptive statis-

tics, and a correlation matrix. Combination familiarity

and cumulative usage demonstrate high correlation in

Table 3. This is not a problem except for inflated stan-

dard errors, given the desirable large sample proper-

Table 3 Correlation Matrix for All U.S. Patents, May/June 1990 �n = 17�264�

cites mean variance prior single numsub newest class comp combin

mean tech control 0�31

variance tech control 0�30 0�94

number prior art cites 0�12 0�02 0�00

single subclass −0�06 0�00 0�00 −0�07
number subclasses 0�11 0�01 0�07 0�08 −0�29
newest subclass −0�08 −0�08 −0�07 −0�03 0�24 −0�23
number of classes 0�08 −0�02 0�01 0�06 −0�24 0�51 0�07

component familiarity 0�16 0�30 0�35 −0�01 −0�09 0�27 0�01 0�14

combination familiarity 0�01 0�06 0�05 −0�04 0�47 −0�27 −0�05 −0�23 0�17

cumulative comb usage −0�05 −0�03 −0�03 −0�05 0�65 −0�30 −0�05 −0�26 0�06 0.85

ties of maximum likelihood estimators (Greene 1993,

p. 133).

Negative Binomial Count Models
The dependent variable of citation counts takes on

only whole number values (that is, 0, 1, 2, etc.). The

use of a linear regression model on such data can

yield inefficient, inconsistent, and biased coefficient

estimates (Long 1997). Explicit count models can avoid

these problems. Researchers often use Poisson models

to analyze count data, but Poisson models assume that

the mean and variance of the observed distribution are

equal. These data, like most count data, exhibit over-

dispersion—the variance is greater than the mean.

Negative binomial regressions explicitly accommo-

date this over-dispersion, however, by enabling the

variance to be greater than the mean. Recent develop-

ments (King 1989, Jorgensen 1997) also support inde-

pendent estimation of effects on the mean and the

variance of the predicted mean, as functions of poten-

tially differing sets of variables.

To begin with, consider a model that estimates the

mean number of citations that a patent should receive,

given its independent variables. The observed cita-

tions to the patent will not correspond exactly to

the prediction, however, and will be distributed with

some variance around the expected mean. I opera-

tionalize the uncertainty of invention by estimating

the effects of substantive variables on this variance.

For example, to the degree that some independent
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variable decreases inventive uncertainty, its effect

on the variance of this error distribution should be

negative.

Most derivations of the negative binomial start from

a basic Poisson model (7). The basic Poisson model

estimates the probability of an observed count, condi-

tional on an expected mean �i. To avoid negative (i.e.,

undefined) expected values for the mean �i, Poisson

models typically parameterize explanatory variables

as an exponential function (8). The method of maxi-

mum likelihood is then applied to the joint frequency

formed from the product of the marginal frequencies

of (7), to determine the coefficient values that are most

likely to result in the observed counts.

Pr�yi�xi� =
e−�i�yii
yi!

� (7)

E�yi�xi� = �i = e�xi	�� (8)

The negative binomial model replaces the Poisson

mean �i with the random variable �̃i (9). This replace-

ment enables the inclusion of an error term 
i = e�i—
and allows the predicted mean to vary according to

the distribution of the error term. Substitution of �̃i
for �i in (7) results in (10).

�̃i = e�xi	+�i� = �i
i� (9)

Pr�yi�xi� 
i� =
e−�i
i ��i
i�yi

yi!
� (10)

When �̃i replaces �i in (10), the probability of the

observed count becomes conditional on the error dis-

tribution. This conditioning can be removed, however,

by specifying the error distribution and integrating

with its probability density function to obtain the

marginal density. Most formulations specify a gamma

distribution for 
i with parameter �i and probabil-

ity density function g�
i� as in (11) (Hausman et al.

1984, Cameron and Trivedi 1986, King 1989, Long

1997). Although the error term can take other distribu-

tions, this parameterization is flexible, computation-

ally tractable, and can be derived from a variety of

assumptions. While other versions of the gamma dis-

tribution take two parameters, this derivation (from

Long 1997, p. 232) sets both to �i, which forces the

mean of 
i equal to one and the variance of 
i equal to

1/�i. Integrating (10) with the density function of (11)

gives the probability of the negative binomial of (12).

g�
i� =
�
�i
i

 ��i�


�i−1
i e�−
i�i� for �i > 0�

and ���=
∫ �

0

t�−1e−tdt� (11)

Pr�yi�xi� =
�yi+�i�
yi!��i�

(
�i

�i+�i

)�i( �i
�i+�i

)yi
� (12)

While the first term of (9) fully specifies the mean

of the negative binomial, various parameterizations

of �i remain possible. Cameron and Trivedi (1986)

propose the negative binomial II parameterization (or

Negbin II model) when the variance/mean ratio of

the observed data is linear in the mean. By contrast,

the Negbin I holds the variance/mean ratio constant.

The Negbin II specification is also much more robust

to distributional misspecification than other param-

eterizations (Cameron and Trivedi 1986). I verified

the applicability of the Negbin II by regressing pre-

dicted counts on the quantity (residualsˆ2/predicted).

The coefficient and intercept were positive thus sup-

porting the Negbin II parameterization (Cameron and

Trivedi 1986). Also consistent with Cameron and

Trivedi’s argument (1986), Negbin II models demon-

strated much more significant log likelihoods than

Negbin I models.

Equation (13) specifies the Negbin II parameteriza-

tion of the conditional variance. �i is the inverse of

�i and is parameterized as an exponential function,

similar to the mean specification but with potentially

different variables. Since var�
i� = 1/�i = �i, greater
variance of the error term for a given estimated mean

will result in an increase of �i. I operationalize uncer-

tainty by estimating the effects of the causal vari-

ables on the dispersion parameter �. Variables that

decrease � will decrease the variability and hence the

uncertainty of inventive outcomes.

Var�yi�x�= �
(
1+ �i

�i

)
= �i+��2

i � (13)

STATA estimates (12) by the method of maximum

likelihood. This technique estimates both the mean �i
and variance 1/�i from (12), and hence produces only

a single log likelihood.
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Results
Table 4 presents estimates for the negative binomial

dispersion models of citation counts. Model 1 esti-

mates a baseline model of controls only and Model

2 adds substantive variables to the baseline model.

Piecewise models indicated a nonmonotonic effect of

component familiarity on the dispersion. To accom-

modate this, Models 3 and 4 include both first- and

second-order terms for component familiarity. The

substantive variables greatly increase the explanatory

power of Models 2 and 3, as measured by twice the

difference in log likelihoods and compared to a chi-

squared distribution with degrees of freedom equal to

the added number of variables.4 To test robustness,

Model 4 estimates substantive variables only. Coeffi-

cient magnitudes and significances vary but the sub-

stantive results remain unchanged and significant. To

further check for robustness, I split the data set in half,

randomly, and by month. Signs remained unchanged

although not always significant. The parameter esti-

mates are not standardized and should be interpreted

as the predicted multiplier effect on the mean citation

count and dispersion parameter (they should be expo-

nentiated as in (8) and (13)).

Hypothesis one proposes that usage of familiar

components will enable inventors to apply learning

from previous efforts. Such learning improves inven-

tors’ abilities to select the best components and recom-

bine them more successfully. Component familiarity

has a positive and highly significant coefficient esti-

mate. A patent receives 147%more citations at its max-

imum value of 2.28 as opposed to its lowest value

of 0.5 To interpret less extreme changes in the vari-

able, a one standard deviation increase in component

4 R-squared measures are inappropriate for maximum likeli-

hood estimates and suffer from various problems (Cameron and

Windmeijer 1996). Cameron and Windmeijer (1996) propose an

imperfect (by their argument) measure for a negative binomial

model, but it only considers the explanatory power of variables

on the mean. Cameron (in personal communication) indicated that

an acceptable R-squared measure for measuring the explanatory

power of variables on the dispersion parameter has yet to be

proposed.

5 At its maximum value of 2.28, and from the coefficient esti-

mate of 0.3958 in Model 3, the effect of component familiarity is

e�0�3958∗2�28� = 2�47.

familiarity results in an 11.3% increase in expected

citations.6

While the results support Hypothesis 1, they do

not support Hypothesis 2, that component learning

decreases the uncertainty of invention. Given that the

first-order term by itself became insignificant with-

out controls (model not shown), I estimated piecewise

models to check for a nonlinear effect. These mod-

els indicated a nonmonotonic effect, with the max-

imum negative effect at the 60th percentile of the

data. Compared to a baseline model of no effect of

component familiarity on the variance, component

familiarity decreases the variance by 9.6% at the 60th

percentile.7 Past that point, the effect becomes less

negative and eventually becomes positive at the 96th

percentile. It appears that increasing familiarity with

components has an initially negative effect on the vari-

ability of invention. Eventually this changes, however,

such that the use of very familiar components has a

positive effect on variability.

In parallel to Hypothesis 1, Hypothesis 3 argues that

reuse of familiar combinations lets inventors apply

learning from previous efforts. Such learning enables

refinement and improvement of previous inventions,

such that future inventions are more useful. Com-

bination familiarity demonstrates a positive, strong,

and highly significant effect on the mean. A patent

receives 332% more citations at combination famil-

iarity’s highest value of 11.25 as opposed to its low-

est value of 0. A one standard deviation increase of

combination familiarity results in a 10.3% increase in

expected citations.

In contrast to the contrary results of component

familiarity on the dispersion, combination familiar-

ity demonstrates predicted and highly significant

6 e�0�3958∗0�27�−1= 0�1128.
7 The maximum negative effect of component familiarity on the

dispersion (from Model 3) occurs at 0.5992. At the mean citation

count of 3.80 the variance is therefore

Var�yi�x�= �i+��2
i = 3�80e0�3958∗0�5992

+e�−0�4139∗0�5992+0�3454∗0�59922��3�80e0�3958∗0�5992�2 = 25�32

At the mean citation count of 3.80 and no effect of combination

familiarity on the dispersion at 0.5992, the variance is Var�yi�x�=
�i +��2

i = 3�80e0�3958∗0�5992 + e0�3�80e0�3958∗0�5992�2 = 28�02. Hence the

maximum negative effect is �28�02−25�32�/28�02= 9�6% less.
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Table 4 Negative Binomial Models of Citation Counts (All U.S. Patents, May/June of 1990)

Variable/Models Model 1 Model 2 Model 3 Model 4

Effects on the mean

Mean technology control 0�8830∗∗∗ 0�7790∗∗∗ 0�7800∗∗∗

�0�0198� �0�0215� �0�0216�

Number of prior art citations 0�0181∗∗∗ 0�0184∗∗∗ 0�0185∗∗∗

�0�0012� �0�0012� �0�0012�

Single-class dummy control −0�1742∗∗∗ −0�1568∗∗∗ −0�1605∗∗∗
�0�0349� �0�0437� �0�0438�

Number of subclasses control 0�0271∗∗∗ 0�0183∗∗∗ 0�0185∗∗∗

�0�0044� �0�0049� �0�0049�

Number of subclasses squared −0�0002+ −0�0001 −0�0001
�0�0001� �0�0001� �0�0001�

Newest subclass control −0�0003∗∗∗ −0�0009∗∗∗ −0�0009∗∗∗
�0�0001� �0�0001� �0�0001�

Number of classes control 0�0461∗∗∗ 0�0425∗∗∗ 0�0413∗∗∗

�0�0097� �0�0098� �0�0098�

Component familiarity 0�3807∗∗∗ 0�3958∗∗∗ 0�7195∗∗∗

�0�0430� �0�0441� �0�0353�

Combination familiarity 0�1329∗∗∗ 0�1301∗∗∗ 0�2301∗∗∗

�0�0223� �0�0225� �0�0218�

Cumulative combination usage −0�0384∗∗ −0�0363∗∗ −0�1523∗∗∗

�0�0131� �0�0132� �0�0107�

Constant −0�0899∗ −0�1090∗∗ −0�1134∗∗ 0�9115∗∗∗

�0�0363� �0�0369� �0�0372� �0�0230�

Effects on dispersion parameter

Variance technology control −0�0154∗∗ −0�0187∗∗ −0�0177∗∗
�0�0054� �0�0060� �0�0060�

Activity control −0�0011 −0�0007 −0�0007
�0�0020� �0�0020� �0�0020�

Single-class dummy control 0�1001 0�2426∗∗∗ 0�2111∗∗∗

�0�0656� �0�0725� �0�0731�

Number of subclasses control −0�0170∗ −0�0164∗ −0�0178∗
�0�0075� �0�0081� �0�0081�

Number of subclasses squared 0�0003+ 0�0003+ 0�0003+
�0�0002� �0�0002� �0�0002�

Newest subclass control −0�0003+ −0�0003 −0�0002
�0�0002� �0�0002� �0�0002�

Number of classes control −0�0390∗ −0�0505∗∗ −0�0420∗
�0�0189� �0�0191� �0�0193�

Component familiarity 0�1683∗ −0�4139∗ −0�5331∗∗

�0�0749� �0�2048� �0�1798�

Component familiarityˆ2 0�3454∗∗ 0�3121∗∗

�0�1135� �0�1059�

Combination familiarity −0�1033∗∗∗ −0�1011∗∗∗ −0�0506∗

�0�0249� �0�0248� �0�0200�

Constant 0�0545 −0�0177 0�1609∗ 0�1644∗

�0�0560� �0�0578� �0�0819� �0�0683�

Log-likelihood −41095�26 −41001�92 −40997�26 −42022�00

(n = 17�264 all models, standard errors in parentheses, +p < 0�1, ∗ p < 0�05, ∗∗ p < 0�01, ∗∗∗ p < 0�001)
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results on the dispersion. The negative effect supports

Hypothesis 4, that inventive uncertainty decreases

with the refinement of previously used combinations.

At the mean citation count of 3.80 and the mean value

of combination familiarity at 0.28, the variance is 2.2%

less than it would have been without the effect of com-

bination familiarity on the dispersion. At the maxi-

mum value of combination familiarity, the difference

grows to 64%.

Finally, Hypothesis 5 predicts that cumulative

use of a particular combination will eventually

exhaust recombinant potential. The results support

this hypothesis, as indicated by the negative and sig-

nificant estimate on cumulative combination usage.

When cumulative combination count reaches its max-

imum value of 26.76, a patent receives only 37.9% of

the citations it would have received at the variable’s

lowest value of 0. A one standard deviation increase of

cumulative combination use results in a 5.6% decrease

in expected citations.

Discussion
These results should be viewed cautiously for a

variety of reasons. The typical reservations regard-

ing the use of patent data certainly apply, most

notably that patenting practices and effectiveness vary

across industries (Levin et al. 1987). Furthermore, even

though these data cover all patented technologies

across a two-month time period, much inventive activ-

ity remains unpatented and, hence, unobserved. These

issues cause at least three problems. First, the dataset

misses unimportant inventions that failed to merit a

patent. Use of citation data mitigates this problem,

however, because it includes the bulk of relatively use-

less inventions that receive no or few citations. Sec-

ond, the dataset may miss breakthroughs that firms

chose not to patent, presumably for strategic rea-

sons. However, unless there is systematic bias in those

firms’ use of particular components or combinations,

these results should remain valid. Third, technolog-

ical communities vary in their propensity to patent.

Again, while these models controlled for much vari-

ance across technologies, they did not introduce

explicit industrial controls. But given the focus on

recombinant search across technological communities,

it would be difficult to compile similarly vast observa-

tions across so many communities. The dataset there-

fore trades detail and depth in exchange for breadth

and possibility of observation.

In addition to differences in the dependent variable

of citations across communities, the accuracy of the

independent variables also varies across communities.

Subclasses and combinations of subclasses represent

only a proxy for inventors’ components and architec-

tures. While the subclasses of digital hardware patents

correspond very closely to my engineering experi-

ence, other subclasses may not. For example, financial

patents tend to be classified in fewer subclasses and,

hence, may not reflect a process of recombinant search.

They may also be better characterized as knowledge or

algorithms and not technology. Such patents, however,

became popular only after the observation period.

In addition to concerns about data and variables,

these results also remain open to alternate interpreta-

tions. Most importantly, these models cannot defini-

tively separate learning and familiarity, technological

exhaustion, and life-cycle effects. For example: an

exogenous variable (such as the inventive myopia

described by Henderson (1995)) could drive the use

of particular components and combinations, such that

increased citations might simply reflect the popular

usage of those components and combinations. As a

result, the positive signs in the mean for compo-

nent and combination familiarity and negative sign

for cumulative use might reflect only the normal pro-

gression of technological life cycles, instead of learn-

ing and exhaustion. Even with the multiple controls

for differences in citation patterns across technologies,

types of combinations, and retrospective identification

of seminal subclasses, the models cannot convincingly

reject the alternative argument that the results merely

reflect the normal life-cycle progression.

These reservations do not apply, however, to the

uncertainty hypotheses. Indeed, all of the explana-

tory variables in the mean could simply be interpreted

as control variables for the dispersion estimates. The

combination result supports the intuitive argument

that uncertainty decreases with refinement and high-

lights the importance of early architectural refine-

ments as a source of destabilizing technologies for

organizations and industries (Henderson and Clark
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1990). In contrast, the nonmonotonic results for com-

ponents does not support the simple linear relation-

ship predicted in Hypothesis 2. It remains consistent,

however, with the argument that technological break-

throughs derive from new combinations of well-used

components (Usher 1954, Nelson and Winter 1982,

Sahal 1985). For example, Utterback (1996, p. xxvii)

argues that “radical innovations often are seen to

be based on the synthesis of well-known technical

information or components.” These results also indi-

cate that inventors take more inventive risk with

extremely familiar components. These results support

Utterback’s argument and motivate further research.

For example, are breakthroughs most likely when

inventors combine very familiar components in new

combinations? If this were the case, then break-

throughs would be most likely to emerge from social

contexts that brought together inventors with deep

experience in previously disparate fields. Such con-

texts would also be more likely to be the technologi-

cal source of potential future product life cycles and

trajectories.

Conclusion
This paper developed and tested an explanation for

the sources of purely technological uncertainty. It

argued that the source of technological novelty and

uncertainty lies within the combination of new com-

ponents and new configurations of previously com-

bined components. Inventors’ experimentation with

new components and combinations leads to less suc-

cess on average, but it also increases the variability

that can lead to breakthroughs. Empirical results sup-

ported the arguments with the exception that the use

of more familiar components has a nonmonotonic and

eventually positive effect on the uncertainty of inven-

tion. In contrast to the nonmonotonic effect of com-

ponent familiarity, the refinement of previously used

combinations has a negative and monotonic effect on

uncertainty.

Coupled with recent and complementary research

regarding market influences (Adner and Levinthal

2000) and formal economic models (Klepper 1996),

this work helps us understand the causal forces that

underlie the widely observed regularities of the prod-

uct life cycle. The data and methods presented here

also provide a strong basis for further investigations

into the sources of invention and technological uncer-

tainty. Most importantly, negative binomial count and

dispersion models enable researchers to analyze the

first and second moments of patent citation data. Such

models will enable us to move beyond basic counts

in analysis of patent data and quantitatively ana-

lyze the outliers of the highly skewed distributions

of inventive trials. Such tools can enable more formal

analysis of breakthrough inventions, heretofore, “the

domain of economic historians” (Scherer and Harhoff

2000). For example, the classic controversy about the

sources of technological breakthroughs, whether they

emerge from smaller, entrepreneurial, and “outside”

firms (Schumpeter 1939, Marquis 1969, Klein 1977), or

large, industrial incumbents (Schumpeter 1942), can

be reconsidered with these data and methods. The

approach presented here also has application beyond

the study of technology and patents, mainly that we

should think of varying variance as an opportunity

instead of a nuisance.

Future work should also investigate the relation-

ships between invention as a recombinant search pro-

cess and other literatures such as integrality, coupling,

and modularity (Ulrich 1995), complex systems

(Kauffman 1993), modular operators (Baldwin and

Clark 1999, Goldenberg et al. 1999), the evolution of

modular design choices (Simon 1996), and the market

implications of such issues (Christensen and Verlinden

2000). For example, interdependence between compo-

nents should increase inventive uncertainty and mod-

ularity should decrease it. Kauffman’s (1993) models

of search over interdependent landscapes also imply

a positive but nonmonotonic effect on the mean. Con-

ceptualizing technological invention as search over

interdependent landscapes implies a complexity catas-

trophe in technological evolution, as inventors face

greater numbers of components and greater interde-

pendence between them (Fleming and Sorenson 2001).

Inventors are not blind search agents, however, and

their search strategies will differ greatly and pre-

sumably be more effective than genetic recombination

(Gavetti and Levinthal 2000, Rivkin 2000).

The work has strategic implications as well. Organi-

zations that seek technological breakthroughs should

experiment with new combinations, possibly with
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old components. They do so, however, at the risk

of an increased number of failures. If invention is

indeed a partially blind search process, such fail-

ures are to some extent unavoidable. Simple port-

folio strategies are unfortunately not the complete

answer, because of the extreme skew of inventive

distributions. Although the overall variance of such

distributions decreases with an increasing number

of trials, firms—and indeed, as Scherer and Harhoff

(2000) demonstrate—entire economies cannot antici-

pate completely stable returns. There might exist orga-

nizational mechanisms that encourage recombinant

exploration, while limiting the downside of increased

failures. For example, firms that can screen or test

their nascent inventions more effectively will bene-

fit more and should increase the variability of their

inventive trials. The recent progress in drug design as

a result of automated screening processes provides a

salient example (Amato 1999). Finally, science should

enlighten and shorten technological search over diffi-

cult landscapes. Science can either motivate recombi-

nant search across particular technological landscapes,

or aid in search across landscapes that inventors have

discovered empirically.
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