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Abstract: Robotics has revolutionized the manufacturing industry by replacing human labor with ma- 
chines; but in certain �elds such as medical or extreme environments, the rigidity of traditional robots fail 
to function as desired. The National Aeronautics and Space Administration (NASA) Ames Research Center is 
putting e�ort in developing a new Entry-Descent-Landing (EDL) robotic concept based on a 6-bar 24-cable 
tensegrity structure. For ease of deployment, the robotic structure is to be packed into a tight space and the 
operating conditions for e�ciently packing a tensegrity robot is investigated in this paper. This paper 
shows that model-based controllers (Proportional-Derivative (PD) Control or Linear-Quadratic (LQ) Control) 
together with feedback linearization is capable of manipulating the robot into a packed con�guration. Two 
packing con�gurations (triangular and hexagonal) are proposed for packing depending on the actuation 
ability of the robot.
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Abstract

Robotics has revolutionized the manufacturing industry by replacing human labor with ma-

chines; but in certain �elds such as medical or extreme environments, the rigidity of traditional

robots fail to function as desired. The National Aeronautics and Space Administration (NASA)

Ames Research Center is putting e�ort in developing a new Entry-Descent-Landing (EDL)

robotic concept based on a 6-bar 24-cable tensegrity structure. For ease of deployment, the

robotic structure is to be packed into a tight space and the operating conditions for e�ciently

packing a tensegrity robot is investigated in this paper. This paper shows that model-based

controllers (Proportional-Derivative (PD) Control or Linear-Quadratic (LQ) Control) together

with feedback linearization is capable of manipulating the robot into a packed con�guration.

Two packing con�gurations (triangular and hexagonal) are proposed for packing depending on

the actuation ability of the robot.
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1 Introduction

The introduction of robotics into the manufacturing industry has revolutionized how things are
made today. Moreover, the consistency and e�ciency of robotic processes far exceeds anything
humanly capable. But the �eld of robotics has not reached its full potential in surroundings with
uncertain operating conditions. An example of this would be earthquake or �re rescue missions,
where �re�ghters still risk their lives entering the scene to rescue victims. This begs the question
of why the current technology is incapable of solving this problem.

A fundamental principle behind traditional robotic inventions is the rigidity nature of it.
Robots are made of rigid bars connected with hinges, bolts, or other hardware. To make matters
worse, locomotion of these robots are painfully limited to wheels, belt drives, or other similar
mechanisms. The result of this is rovers that look like miniature tanks. In order to �nd a solution
to this rigidity problem, the fundamental structure of a robot had to be investigated, and this paper
will look into a tensegrity robot.

This capstone project is in collaboration with The National Aeronautics and Space Adminis-
tration (NASA) Ames Research Center as part of the Super Ball Bot project [10]. The Super Ball
Bot is a robotic structure based on tensegrity structures (discussed below), and this paper focuses
on the developement of a model-based controller for packing the Super Ball Bot.

1.1 Tensegrity History

Tensegrity is an acronym for "Tensional Integrity." It was �rst coined by Richard B. Fuller, who
experimented with the structural concept of rigid bodies in compression stabilized by a network
of strings in tension as early as in 1927 [14]. This structure, as implied by the name, retains its
integrity only through tensile members, most likely cables or strings; whereas compression members
(herein called bars) are used to hold the cables in place. Figure 1 shows some illustrations of the
structures included in Fuller's tensegrity patent in 1962 [5].

Figure 1: Tensegrity illustrations from R B Fuller's 1962 patent[5]

Page 1
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1.2 Tensegrity Structures

Several simple tensegrity structures are illustrated by Snelson's patent in 1965 as shown in Figure
2 [18]. This type of structure is bene�cial because it is inherently compliant. If you imagine the
cables made up of stretchable materials, like rubber bands, it is apparent that the structure is
deformable under di�erent load conditions. In other words, by adjusting the lengths of the cables,
we can manipulating this structure such that the shape changes and it can �t into smaller crevices
that previous rovers were incapable of reaching. And from this, tensegrity robots are born.

Figure 2: Tensegrity illustrations from Snelson's 1965 patent[18]

The tensegrity structure investigated in this paper is a simple 6-bar, 24-cable icosahedron
tensegrity structure (See Section 2 - Mathematical Model for more details). This was chosen be-
cause it is the simplest ball-like tensegrity structure, which is bene�cial for rolling locomotion.

1.3 Controlling a Tensegrity Robot

Research of controlling tensegrity structures and utilizing them in robotics was �rst started in
the 1990's by Robert E. Skelton and his research group at Purdue University [15,16,17]. His works
explored the possibilities of actuating the tensegrity by changing the length of the cables, bars alone,
or a combination of both. Moreover, together with Aldrich et al, they studied tensegrity structures
in the context of robotics. They presented a feedback linearizarion approach to deployment control
of planar tensegrity structures along a prede�ned path [1, 2]. Anders S Wroldsen, together with
Robert E. Skelton and Mauricio C. de Oliveira, also investigated the dynamics and formulation of
non-minimal description of the system [21].

Page 2
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Recently, with the goal of exploring Titan in mind, NASA Ames Research Center is currently
developing the tensegrity Super Ball Bot[10,11]. To achieve a fast and dynamic tensegrity robot,
they developed a simulation environment to using the Bullet Physics Engine. A screenshot of the
simulation is shown in Figure 3 [10]. Using this simulation as a platform, Despraz, Iscen and others
at Ames have developed an evolutionary control approach through Central Pattern Generation
(CPG) algorithms [4,7].

Figure 3: Bullet simulation environment for NASA tensegrity superball[10]

1.4 Packing of a Tensegrity Robot

Aside from locomotion features of the tensegrity structure, in order to e�ciently deploy them on
missions, packing of the structures are equally important. For this purpose, this paper investigates
the control strategy in order to e�ciently pack the tensegrity robot for deployment.

An animation from NASA Ames shown in Figure 4 shows the expected packing sequence for
the robot[10]. This sequence is taken as a reference in the design, but we will look further into control
algorithm development and suggest a more feasible method of packing. While CPG is important for
locomotion due to the unknown terrains, packing is proposed to be done with a traditional model-
based controller (Proportional-Derivative (PD) control with Feedback Linearization) here.

Figure 4: Animation (from left to right) of packing a 6-bar tensegrity robot[10]
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2 Dynamics & Mathematical Model

The dynamics of general tensegrity structures are extensively researched and presented in multiple
works such as those by Skelton, de Oliveira, Sultan, and Wroldsen et al.[15,19,12, 21]. For the
purpose of this paper, we will adopt that of Wroldsen's PhD thesis[21]. His results are presented
below and applied to suit the 6-bar tensegrity structure we have. For the complete derivation, please
refer to the indicated paper.

2.1 Assumptions

In order to simplify the dynamics for reasonable computation, several basic assumptions are made
and presented below:

2.1.1 Rods

• are rigid and inextensible. Hence the length of the rods always remains constant L ;

• are thin cylindrical elements. Hence the rotational motion about its own axis is neglectable.

2.1.2 Cables

• are massless;

• are linear with a sti�ness constant of k .

2.1.3 Tensegrity Structure

• is a tensegrity where no rods touch each other;

• is actuated by all cables and no rods.

2.2 Single Rod Dynamics

To describe the tensegrity structure, we �rst look into the dynamics of a single rod. To generate the
ordinary di�erential equations (ODEs) for the ith rod, we �rst de�ne the minimal coordinates:

qi =


x
y
z
θ
φ


i

(1)

where qi is the minimal coordinate vector that represents the i
th rod; x , y , and z are the (x,y,z)

coordinates that describe the center of mass of the rod; θ and φ are the polar angles to describe the
orientation of the rod (see Figure 5).

Page 4
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Figure 5: System coordinates to describe a rod

Additionally, the unitary direction vector can be represented by:

bi =

 cosθsinφ
sinθsinφ
cosφ


i

(2)

By ensuring that the position vector is pointing to the center of mass of the rod, the equations
of motions of the ith rod with respect to the coordinates q derived in Wroldsen's paper[21] simpli�es
to:

Mi(qi)q̈i = Hi(qi)(gi(qi, q̇i) + tqi) (3)

Mi(qi) =


m 0 0 0 0
0 m 0 0 0
0 0 m 0 0
0 0 0 1 0
0 0 0 0 1


i

∈ R5×5 (4)

Hi(qi) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

Jsin2φ
0

0 0 0 0 1
J


i

∈ R5×5 (5)

gi(qi, q̇i) =


0
0
0

2Jφ̇θ̇sin φ cos φ

Jθ̇2sin φ cos φ


i

∈ R5 (6)

tq represents the generalized forces acting on the rod in terms of the coordinate q . These
generalized forces in the unconstrained tensegrity structure are the forces from the cables.
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2.3 Cable Forces

The cable forces will also follow the convention presented in Wroldsen's paper[21], �rst de�ning si
as the vector between the two nodes of the ith string and the scalar control input is de�ned as each
individual cable force:

ui = k(||si|| − l0) (7)

where k is the spring constant of the cable, l0 is the controllable rest length of the cable. Notice
that since the scalar control input ui is the tensional force of each cable, which indicates that it
must be strictly greater or equal to zero. Hence the constraint:

ui ≥ 0 (8)

2.4 Full Tensegrity Model

For the Super Ball Bot project, the tensegrity structure is a 6-bar icosahedron. For simpler notation,
the nodes are assigned as follows:

bar 1 2 3 4 5 6

nodes 0, 1 2, 3 4, 5 6, 7 8, 9 10, 11

Therefore, to have the icosahedron con�guration, the connectivity matrix is de�ned by:

C ∈ R24×12 (9)

as de�ned in Appendix A. The 24 rows of the connectivity matrix correspond to the 24 cables that
hold the tensegrity structure together, whereas the 12 columns correspond to the 12 end nodes of
the 6 rods, and each cable is connected to two nodes.

The resulting tensegrity structure is depicted by the illustration in Figure 6 by Burkhardt
[3].

Figure 6: 6-bar, 24-cable icosahedron tensegrity[3]

Page 6



University of California, Berkeley Author: Justino J Calangi

Since all the rods in the tensegrity structure are strictly independent and only interact through
cable forces, the dynamics equations for all six rods can be simply concatenated to form the system
coordinate matrix and dynamics equations:

M(q)q̈ = H(q)(g(q, q̇) + tq) (10)

where

q =



q1
q2
q3
q4
q5
q6

 ∈ R30 (11)

M(q) =



M1(q) 0 0 0 0 0
0 M2(q) 0 0 0 0
0 0 M3(q) 0 0 0
0 0 0 M4(q) 0 0
0 0 0 0 M5(q) 0
0 0 0 0 0 M6(q)

 ∈ R30×30 (12)

H(q) =



H1(q) 0 0 0 0 0
0 H2(q) 0 0 0 0
0 0 H3(q) 0 0 0
0 0 0 H4(q) 0 0
0 0 0 0 H5(q) 0
0 0 0 0 0 H6(q)

 ∈ R30×30 (13)

g(q, q̇) =



g1(q, q̇)
g2(q, q̇)
g3(q, q̇)
g4(q, q̇)
g5(q, q̇)
g6(q, q̇)

 ∈ R30 (14)

Also, after de�ning the connectivity matrix, the generalized forces acting on all rods can be
written in terms of C and u .

tq = −δγ(q)
δq

T 24∑
i=1

(CTi Ci ⊗ I3)γ(q)ui = B(q)U (15)
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where Ci is the i
th row of the connectivity matrix C , and

γ(q) =



rn0
rn1
rn2
rn3
rn4
rn5
rn6
rn7
rn8
rn9
rn10
rn11



=



x1 +
L
2 cos θ 1sin φ 1

y1 +
L
2 sin θ 1sin φ 1

z1 +
L
2 cos φ 1

x1 − L
2 cos θ 1sin φ 1

y1 − L
2 sin θ 1sin φ 1

z1 − L
2 cos φ 1
...

x6 +
L
2 cos θ 6sin φ 6

y6 +
L
2 sin θ 6sin φ 6

z6 +
L
2 cos φ 6

x6 − L
2 cos θ 6sin φ 6

y6 − L
2 sin θ 6sin φ 6

z6 − L
2 cos φ 6



∈ R36 (16)

is the vector of (x ,y ,z )-coordinates of all 12 nodes, and

B(q) = −δγ(q)
δq

T

[(CT1 C1 ⊗ I3)γ(q) . . . (CT24C24 ⊗ I3)γ(q)] ∈ R30×24 (17)

is the matrix that maps the 24 control inputs U into the 30 states in q . Therefore the model
dynamics boil down to

M(q)q̈ = H(q)(g(q, q̇) +B(q)U) (18)

2.5 Dynamics Observations

It is important to note that this dynamics formulation of the tenegrity problem has its own advan-
tages and disadvantages which are also discussed in Wroldsen's paper[21]:
Advantages:

1. This dynamics formulation is fairly common among mechanical systems so various controller
designs are available.

2. The chosen coordinate system is such that it is minimal, hence no additional algebraic con-
traints are necessary when solving the ODE.

Disadvantages:

1. The formulation is such that the ODE inclues many nonlinear components due to the sin and
cos manipulations, these nonlinearities are ampli�ed at higher derivatives.

2. There are many singularities within this formulation, one of which is the constraint that φ
should never be 0 or π (vertical rod). During design it is important to avoid such con�gura-
tions.

Another simpli�cation made in the formulation of the dynamics is the assumption that there
are no constraints on the tensegrity. This assumption is justi�able since we are only investigating
packing properties of the structure, where all forces generated in order to pack is purely internal,
and that external forces have minimal e�ects on the procedure.
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3 Simulation Tools

3.1 Existing Bullet Simulator

As discussed in Section 1.3, the bullet simulator has helped NASA Ames researchers develop neural
evolving control algorithms to roll the tensegrity ball bot. This was possible because Bullet is
capable in modelling both high level interaction between the tensegrity structure with the ground,
as well as soft cable linkages between individual rigid rods. Moreover, since no user intervention
is necessary during the neural learning algorithm, the simulator is programmed such that it is
di�cult to obtain intermediate states of the system, which in turn makes traditional control system
development (such as state feedback designs) impossible on the simulator.

3.2 MATLAB/Simulink Simulator

With these drawbacks in mind, it was decided that another simulator more suitable for controller
development was needed. For this purpose, MATLAB was selected as the platform and the block
diagram in Figure 7 below was built using Simulink based on equation (18). As seen in the block
diagram, each rod has its own independent dynamics which correspond to the 6 central blocks. The
states of each rod is then fed back into a function StringForces.m that corresponds to the B(q)
matrix.

Figure 7: MATLAB/Simulink block diagram of 6-bar tensegrity robot

3.3 MATLAB ode45 solver

In addition to using Simulink for the �nal simulation and veri�cation, ode45 in MATLAB was
extensively used during the development in order to further explore other types of control strategies
such as Model Predictive Control (MPC).

Page 9
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4 Control System Design

4.1 State Space Realization

To begin with the control system design, we �rst de�ne the state and the system therefore can be
represented by the following nonlinear state space representation:

X =

[
q

q̇

]
∈ R60 (19)

Ẋ =

[
q̇

M(q)−1H(q)g(q, q̇)

]
+

[
0

M(q)−1H(q)B(q)

]
U (20)

The output equation of the state space representation depends on where sensors are located. For
the purpose of this paper, we will assume that all states X are directly measurable. If this is not
the case, the observability conditions need to be investigated:

Y = X (21)

4.2 System Properties

4.2.1 Observations

An outstanding fact when examining this particular tensegrity ball bot structure is that it is un-
deractuated. The system itself has 30 degrees of freedom, together with their derivatives make up
the state of dimensionalitiy of 60. On the other hand, the con�guration of the ball bot only has 24
cables, which in turn manifest as 24 control inputs.

4.2.2 Controllability

For nonlinear systems, controllability can be evaluated using the controllability matrix composed
of Lie Brackets [8] in the form of:

P =
[
g(X) [f(X), g(X)] [f(X), [f(X), g(X)]] . . .

]
(22)

However, due to the complexity of the system, a local controllability approach is done by evaluat-
ing:

P =
[
g(X0) f(X)|X0g(X0) f(X)|2X0

g(X0) . . .
]

rank(P) = 48 (23)

As seen from the formulation of the P matrix, the system is linearized about its initial position
(unpacked and standing). Since the linearized system is not full ranked (48<60), the system lin-
earized about this initial position is not fully controllable but it may still be accessible, computing
the Lie Brackets introduce transcendental nonlinearities and is not done here. We will proceed with
the conclusion that there are 12 states that are uncontrollable and identify them further in the
paper.
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4.3 Feedback Linearization

In order to develop a control system, feedback linearization is used. Feedback linearization aims to
linearize the system using the output. In our case as de�ned by equation (21), output linearization
is equivalent to state feedback linearization, which simpli�es the formulation of the problem.

We �rst de�ne a synthetic input such that:

V =M(q)−1H(q)g(q, q̇) +M(q)−1H(q)B(q)U ∈ R30 (24)

The system model from equation (20) then simpli�es to:

Ẋ =

[
0 I30
0 0

]
X+

[
0

I30

]
V (25)

which is a linear system.

Although this formulation seems simple at �rst glance, it is important to recall the under-
actuated nature of the problem. A major hurdle is that equation (24) presents V in terms of U .
When applying the control, U has to be computed by:

U = B(q)−1[H(q)−1M(q)V− g(q, q̇)] (26)

but B(q) ∈ R30×24 is not a square matrix and hence B(q)−1 does not exist.

The use of Moore-Penrose pseudoinverse is proposed here to calculate a "least square" �t to
the problem to best approximate the solution. However, this renders the stability of the controller
useless since we now have less actuation than degrees of freedom. This feedback linearization
technique is used for the development of the Proportional-Derivative (PD) and Linear-Quadratic
(LQ) controllers, whereas the development of the Model Predictive Controller (MPC) does not use
feedback linearization because the constraints on U will be hard to implement.

4.4 Controller Design

4.4.1 Proportional-Derivative (PD) Control

Since the system is now linear to V, various control techniques are now available. We will �rst
explore the simple design where:

V = q̈target − 2ζωn(q̇− q̇target)− ω2
n(q− qtarget)

= −2ζωnq̇− ω2
n(q− qtarget) (27)

where ζ and ωn are tuning parameters to control the settling time of the tensegrity. Note that
q̈target = q̇target = 0 and drop out of the equation. An obvious disadvantage of this formulation
is that all states are designed to settle at the same rate dependent on ζ and ωn. An advantage of
this formulation is that by picking ζ and ωn to be positive, the system is guaranteed stability in the
linearized form.
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4.4.2 Linear-Quadratic (LQ) Control

Linear-Quadratic (LQ) Control is designed to give preference to which states are more important
than the others. This optimal control is done by minimizing the quadratic cost function:

J =

∫ tf

t0

(XTQX+VTRV) (28)

The controller gains are then obtained by solving the Riccati Equation of the linearized system. As
indicated by the feedback linearized system dynamics in equation (25), since (A,B) is a controllable
pair and (C,A) is an observable pair, the LQ formulation is guaranteed robust stability.

4.4.3 Model Predictive Control (MPC)

Model Predictive Control was also attempted during the course of study of the tensegrity ball bot.
A major advantage of MPC is that the designer can actively implement constraints onto the control
input and states. By implementing a receding horizon control, the optimization algorithm would
minimize the cost function similar to that of LQ control over a �nite horizon N .

In order to directly implement constraints on the actual control input U , the feedback
linearization was not done and the original state space model in equation (20). In order to implement
this, Euler's explicit discretization was used:

X(k + 1) = X(k) + dtẊ(k) (29)

[
q(k + 1)
q̇(k + 1)

]
=

[
q(k)
q̇(k)

]
+ dt

[
q̇(k)

M(q(k))−1H(q(k))(g(q(k), q̇(k)) +B(q(k))U)

]
(30)

fmincon inside MATLAB was used with the constraints shown in equation (8).

Due to the high degrees of nonlinearities within the system. fmincon was unable to �nd the
optimizer U . However, the formulation of the problem in this manner is promising and should be
explored further with better numerical optimization algorithms.
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5 Simulation Results

5.1 Packing Tensegrity into Triangular Con�guration

The initial attempt to fold the tensegrity structure was to follow the animation shown in Figure 4.
This was done by contracting the corresponding 12 cables to a target of zero length, and the target
state matrix is shown in Appendix B. This resulted in the animation shown in Figure 8.

Figure 8: MATLAB simulation of folding a tensegrity structure (left to right)

The corresponding control input in order to pack the structure into the proposed triangular
con�guration is plotted below in Figure 9. Note that the each cable force corresponds to a unique
colored line in the plot. The length of all 24 cables during the process is also plotted in Figure
10.

Figure 9: Control input necessary to pack
tensegrity into triangle

Figure 10: Cable lengths during the packing of
tensegrity into triangle

Although this packing scheme is very e�ective in terms of space, 12 out of the 24 cables need
to be fully retracted (lengths go to zero as seen in Figure 10) in order for the nodes to coincide and
form the triangle. However, mechanical design of fully retractable cables are not always possible,
hence another packing con�guration is explored below.
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5.2 Packing Tensegrity into Hexagonal Con�guration

Instead of having to retract all the cables for packing, another packing con�guration in the shape
of a hexagon is proposed. This packing shape is the natural collapse con�guration of the 6-bar
tensegrity structure and a separate simulation of loaded collapse of the structure was done; qtarget
is shown in Appendix B. Using the hexagonal target con�guration, the PD controller was �rst
developed by using the parameters:

ζ = 2, ωn = 10 (31)

The reason for these parameters is that the control system must be over damped in order to avoid
oscillations. This ensures that the rods remain contactless with each other. ωn on the other hand
controls the settling time of the structure. The resulting simulation is shown below in Figure 11
and the control input necessary is shown in Figure 12.

Figure 11: MATLAB simulation of folding a tensegrity structure to hexagonal con�guration (left
to right). Top: Isometric View, Bottom: Side View

Figure 12: Control input necessary to pack tensegrity into hexagon with PD controller
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Notice that the V synthetic input is not stable. In fact, when examining the states of each
individual rod as shown in Figures 13 and 14, it can be seen that the θ of each rod is unstable. This
relates back to previous discussion on controllability of the system. As we mentioned in Section
4.2.2, there are 12 states that are uncontrollable and considered as internal dynamics. It is clear
from the plot that θ and θ̇ of all rods (a total of 12 states) are unstable. However, aside from those
unstable states, the rest all converge to the set targets with no oscillations as designed.

Figure 13: Position coordinates of each rod
(x:blue y:green z:red)

Figure 14: Angular coordinates of each rod
(θ:blue φ:green)

In addition to the PD controller design, an LQ controller was also proposed with the following
Q and R :

Qrod =


100 0 0 0 0
0 100 0 0 0
0 0 100 0 0
0 0 0 1 0
0 0 0 0 100

 Rcable = 0.001 (32)

These values were chosen as an example to emphasize on the states x , y , x , and φ , while not
being too restrictive on the control input U . The results were similar to that of the PD controller
and the same phenomenon of unstable θ was observed. This shows that despite a stable controller
design after feedback linearization (using LQ or PD), the fact that we are using a "least-squares"
approximation with the Moore-Penrose pseudoinverse would destabilize the system and needs to be
further investigated.

However, the packing into hexagonal con�guration does not require complete retraction of the
cable, and hence is a more realistic design for the Tensegrity Super Ball Bot.
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6 Conclusions and Future Works

In this paper, the design of a control system for packing the 6-bar 24-cable tensegrity ball bot
is investigated. Two major packing con�gurations (triangular and hexagonal) are proposed and
feedback linearization was applied to the minimal dynamics ordinary di�erential equations.

First and foremost, the minimal coordinates to describe the system has its advantages and dis-
advantages as discussed in Section 2.5. In order to avoid the nonlinearities, a non-minimal dynamics
model is discussed in the works of Skelton [15]. This formulation of the problem also eliminates the
singularity condition we see in the ODE formulation where the rod is vertical. Although the formu-
lation has reduced nonlinearities, the tradeo� is that the coordinates are non-minimal and algebraic
constraints are necessary. However, this formulation might be more suitable in the implementation
of model predictive control algorithms since MPC deals with constraints explicitly while optimizing
the cost function.

In addition to the model dynamics, the formulation of the state space realization presented in
Section 4.1 assumes that all states are readily available as measurements. In the implementation of
the tensegrity robot, it is highly unlikely that all states are measureable. This would introduce the
problem of observability of the system and an observer will have to be in place based on the sensors
and outputs available. Moreover, sensor noise will have to be taken into account when designing
the controller and a Linear-Quadratic Gaussian (LQG) controller might be needed.

Nonetheless, the triangular packing of the tensegrity ball bot is done by fully contracting
12 cables and relaxing the remaining 12 cables. This allows the nodes to overlap with each other
and reach the target triangular con�guration. An obvious advantage of this packing scheme is the
fact that the target con�guration is very compact. On the other hand, 12 cables need to be fully
retractable in order for this to work, whereas in real prototyping it might be impossible to do so.
In order to overcome this drawback, a di�erent packing scheme is investigated.

The hexagonal packing scheme is inspired by the nature collapse of a tensegrity structure under
external load. This packing does not require any cable to be fully retractable. In fact, the cables
only need to be extendable by 23.1% and retractable by 42.3%. This packing scheme, however, does
require full actuation of all 24 cables in order for it to successfully pack. Another drawback of this
packing scheme is the control development shown in Section 5.2. Despite the stabilizing controllers
developed using the feedback linearization techniques, the fact that the system is underactuated
and there are 12 states uncontrollable (See Section 4.2.2) and we are resorting to a least squares
estimation destabilizes the system in the θ direction. While this may seem like an issue, it actually
is not since the structure is simply rotating on the plane that it has folded. Notice that this is only
a problem in this simulation since the tensegrity is currently unconstrained. When external forces
such as friction from the ground is acting on the folded structure, it will eliminate the rotation of
the structure.

Therefore, packing con�guration of the tensegrity structure depends on the mechanical design.
If the cables are fully retractable, then packing into a triangle will require nothing more than pulling
in 10 cables and relaxing the rest. However, if cables are not fully retractable but �t within the
motion bandwidth discussed above, a hexagonal packing con�guration is preferred and control
algorithms (such as PD, LQ, or MPC) can be developed.
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APPENDIX A: Connectivity Matrix

C =



1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1



∈ R24×12 (33)
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APPENDIX B: Target Con�guration

Triangular Packed Con�guration:

qtarget =



0.0584
0.0215
0.0578
−0.8229
−1.3078
−0.0779
0.0379
−0.0139
1.2674
0.7533
−0.0708
0.0391
−0.0060
1.2460
0.7483
0.0235
−0.0624
−0.0441
−0.0077
1.0254
0.0497
0.0327
0.0586
−0.7877
1.7805
0.0171
−0.0688
−0.0524
−0.0706
1.0668



Hexagonal Packed Con�guration:

qtarget =



0.0330
0.0789

0
−1.1261
−1.5708
−0.0330
−0.0789

0
−1.1261
−1.5708
−0.0519
0.0680

0
−0.0790
1.5708
0.0519
−0.0680

0
−0.0790
1.5708
0.0848
0.0109

0
0.9682
1.5708
−0.0848
−0.0109

0
0.9682
1.5708


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