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Abstract 

 

Geographic localization of knowledge spillovers is a long-held tenet of economic geography. However, 

empirical research has examined this phenomenon by considering only one geographic unit (country, state 

or metropolitan area) at a time, and has also not accounted for spatial distance in such analyses. We 

disentangle different geographic effects by using a regression framework based on choice-based sampling 

in order to estimate the likelihood of citation between random patents. We find borders both at the 

country and state level to impose a constraint on knowledge diffusion over and above what geographic 

proximity in the form of metropolitan boundaries or geographic distance can explain. An identification 

methodology based on comparing inventor-added and examiner-added citation patterns points to an even 

stronger role for political borders than for spatial proximity per se. The state border effect, although 

robust on average, has been waning over the 30-year time period we examine. On the other hand, the 

country effect has in fact strengthened despite the commonly expected trend towards globalization and the 

seeming ease of cross-border communication with technological advancement. 
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1. INTRODUCTION 

Establishing the micro-foundations of industrial agglomeration has become a key focus in economic 

geography. Moving beyond examining just exogenous locational characteristics, recent work has 

documented three endogenous mechanisms for why agglomeration takes place: benefits from labor 

pooling, efficiency gains from co-location of related industries, and localized knowledge spillovers 

(Ellison, Glaeser, and Kerr, 2010). Of these, knowledge spillovers have generated the most scholarly 

attention, perhaps because they are seen as critical for value creation and innovation in an increasingly 

knowledge-intensive economy. In this study, we take a closer look at the role played by various 

geographic elements in shaping such spillovers, including political borders and spatial proximity. 

Even though several studies have documented localization of knowledge spillovers, the 

geographic levels most relevant for this phenomenon still remain unclear. A significant fraction of related 

empirical work has studied only country-level spillovers (Branstetter, 2001; Keller, 2002; Singh, 2007), 

with such studies sometimes being justification for assumptions used in theoretical models of economic 

growth (Romer, 1990; Grossman and Helpman, 1991). Other studies have taken borders at a less 

aggregate level – states – as the geographic unit of interest (Jaffe, 1989; Audretsch and Feldman, 1996; 

Almeida and Kogut, 1999; Rosenthal and Strange, 2001). The focus on either of these political borders is 

typically for one of two very different reasons. On the one hand, since it can be hard to obtain precise 

measures for geographic distance or co-location, some researchers have interpreted national or state 

borders as just a convenient proxy for proximity. On the other, others genuinely believe that national and 

state borders are important over and above proximity effects, for example due to institutional differences.  

A glaring gap in the above literature remains that hardly any of the studies has rigorously tried to 

disentangle the effects operating at different geographic levels, which provides limited guidance 

regarding the exact geographic scope of knowledge spillovers. For example, although intra-country 

knowledge spillovers are found to be more intense than those across countries, this might simply reflect 

an aggregation of state- or metropolitan-level phenomena. Similarly, interpretation of state-level 

localization findings is unclear, as these might also be driven by effects operating more locally and are 

thus open to criticisms to the effect that “state boundaries are a very poor proxy for the geographical units 

within which knowledge ought to circulate” (Breschi and Lissoni, 2001: 982).  

Perhaps motivated by such ambiguities, or by criticism like Krugman’s remark that “states aren’t 

really the right geographic units” in economic analysis (1991:43), recent research appears to have 

increased focus on exploring agglomeration at less coarsely defined geographic levels. For example, 

Rosenthal and Strange (2003) note that agglomeration attenuates sharply with distance, the strongest 

effects occurring within a ten-mile radius. Their work is underscored by the modeling of spatial clusters 

by Kerr and Kominers (2012) and a study of the Manhattan advertising industry by Arzaghi and 
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Henderson (2008) that shows entrants more likely to appear geographically proximate to incumbents due 

to spillover effects. This stream of work does not, however, typically examine state or national borders. 

Despite a rich body of work examining different geographic levels, few have considered different 

levels of border and proximity effects simultaneously in order to unpack the contribution of each, leaving 

unresolved important questions such as whether localization effects demonstrated for larger geographic 

units (country or state) might merely be a manifestation of mechanisms merely on spatial proximity. It is 

unclear whether to interpret prior border-related findings simply as “distance is not dead” or as borders 

having an important and independent role on their own. Even studies that do examine multiple geographic 

levels, such as the path-breaking article by Jaffe, Trajtenberg and Henderson (1993), analyze different 

geographic units separately and study individual border effects without accounting for spatial proximity. 

 In addition to not unpacking various geographic levels, research on spillovers generally does not 

account for spatial distance, treating collocation within each geographic unit as just a measure for 

geographic proximity without attempting to disentangle border and distance effects. Identifying border 

effects truly associated with collocation within the same country or state, independent of distance, would 

require a simultaneous consideration of borders and distance. Although a few have used at least some 

distance-based measures, these have typically been too aggregate to disentangle all the geographic effects 

of interest. For example, although Keller (2002) employs data on distance between capital cities of 

countries, he does not consider different intra-country distances. Likewise, Peri (2005) considers 

distances between different pairs of states, but does not distinguish different city-to-city distances within a 

state. In this regard, there is a need to dig deeper into the geography of knowledge spillovers in a manner 

analogous to a body of work in the literature on international trade, which examines the role of 

geographic distance versus political borders at the country level (e.g., McCallum, 1995; Anderson and 

Wincoop, 2003) or state level (e.g., Wolf, 2000; Hillberry and Hummels, 2003, 2008).  

Addressing this gap is important given the central role assumptions surrounding the geographic 

scope of agglomeration play in technological innovation, strategy, international economics and 

entrepreneurship. Our empirical approach builds upon the well-established tradition of using patent 

citations to measure diffusion of knowledge. As a further motivation, Figure 1 provides simple graphical 

evidence based regarding the geographic pattern of inter-firm citations to patents from U.S. inventors 

during 1975-2004.
1
 Three observations are worth making. First, the likelihood of citation between random 

pairs of patents decreases with geographic distance. Second, the likelihood of citation is greater within 

country borders than across, greater within state borders than across, and greater within metropolitan area 

                                                 
1
 These charts were constructed using our dataset described later and employed in our regression analysis. Although 

our dataset was derived using stratified sampling from the population of patent pairs, we calculated the summary 

statistics by appropriately weighting each observation so that Figure 1 represents true population characteristics. 
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boundaries (measured using “CBSA” definitions explained later in the paper) than across. Third, the 

national and state border effects seem to be only partly explained by geographic proximity since there 

seems to be a border effect within each of the geographic distance buckets – a finding that continues to 

hold when further redefining or narrowing of the distance buckets. Figure 1 is, however, just based on 

summary statistics and does not account for a number of empirical issues explained later in the paper. 

In more formal analysis reported later, we run a “horse race” among various geographic variables 

to isolate the level at which localization of knowledge spillovers operates most prominently. Specifically, 

we construct a dataset of patent pairs using choice-based sampling and then estimate a “citation function” 

that models the likelihood of citations between random patents. This framework departs from previous 

studies by making no ex ante assumptions about the correct geographic unit of analysis. Instead, it allows 

us to simultaneously account for collocation of the source and destination of knowledge within the same 

country, state or metropolitan area as well as account for fine-grained spatial distance.  

Consistent with prior work, separate analyses we conduct at the national, state and metropolitan 

levels all exhibit spillover localization. Importantly, the findings hold even in regression models where 

these are considered simultaneously in order to account for the fact that considering individual units 

separately overstates their importance. We extend the analysis to models that first parametrically control 

for distance and then employ a set of non-parametric indicator variables. Much of the country- and state-

level effects persist even though there are also independent effects for metropolitan areas as well as 

gradual decaying with distance, same-country localization again much stronger than within a state.  

We view robust localization of knowledge flows within national borders as not a big surprise, 

given the well-documented linguistic, cultural, institutional and economic differences among countries 

(see, e.g., Coe, Helpman and Hoffmaister, 2009). However, time-trend analysis reveals a surprising 

strengthening of the same-country effect over time despite the accepted trend toward globalization and 

technological advances which supposedly smooth cross-border communication. 

We find the state border effect even more puzzling and try to analyze it further. The finding turns 

out not to be driven by just one or two specific states (like California) or sectors (like computers or 

communication technologies). The result is seen even in a subsample comprised of patents close to state 

borders, indicating that the aggregate finding is also not driven by inadequately controlling for distance 

for cited patents in the interior. In fact, state borders are found to matter even in a very conservative test 

where metropolitan effects are completely isolated by considering only patents and (potential) citations 

within metropolitan areas that span state borders. We also analyze trends over time, and do find that – in 

contrast to the country border effect – the state border effect weakens considerably over time.  

Finally, we address two challenges inherent in using patent citations to measure spillover 

localization. First, citation patterns are determined in part by technological relationships which cannot 
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be perfectly captured by any formal classification system (Thompson and Fox-Kean, 2005). Second, 

some citations are added by patent examiners, not inventors, and the extent to which the two represent 

spillovers likely differs (Alcacer and Gittelman, 2006; Thompson, 2006). To address these concerns, 

we first examine the robustness of our prior findings to using only inventor-added citations. We then 

employ an identification strategy (motivated by Thompson, 2006) that calculates true geographic 

effects as the difference between estimates from inventor versus examiner citations. Border effect 

findings remain robust even though this approach weakens the effect of proximity, further highlighting 

the importance of borders beyond pure geographic proximity in shaping knowledge diffusion patterns.  

 

2. EMPIRICAL APPROACH 

2.1. Constructing a patent-based dataset 

We follow the well-established tradition of using citations between patents as an indicator of knowledge 

flows. Although citation-based measures are noisy in capturing true knowledge flows, surveys of 

inventors have established that citations—especially when employed in large samples—do capture 

knowledge flows meaningfully (Jaffe and Trajtenberg, 2002; Duguet and MacGarvie, 2005).  

Admittedly, even assuming that citations do correctly capture knowledge flows, it is not possible to 

decipher when a given citation represents a “spillover”, i.e., a true externality for which the receiver does 

not fully pay. Nevertheless, we follow the prevalent view that using citations is reasonable because they at 

least partly represent spillovers and very often represent benefits the receiver gets in the form of “gains 

from trade” even in other cases where they represent purely market transactions. 

Our dataset is based on United States Patent and Trademark Office (USPTO) patents with 

application years 1975 through 2009. In order to have at least a 5-year window to observe citations that a 

patent receives, we restrict our sample of cited patents to the period 1975-2004, with the set of potential 

patents citing these going all the way until 2009. Since recent literature (Alcacer and Gittelman, 2006; 

Thompson, 2006) has emphasized possible distinction between citations added by the inventors 

themselves versus patent examiners, we also keep track of this information when available (2001 

onwards), and use it to complement our analyses using the full sample. Patent data also include inventors’ 

city, state and country of residence. Since consistent state identification is available only for patents 

originating in the U.S., we restrict the cited patent sample (but not the citing patent sample) to U.S. 

inventors. Our calculation of geographic distances relies upon data from Lai, D’Amour and Fleming 

(2009) that map cities where inventors live to latitudes and longitudes.
2
 We also map these cities to Core 

                                                 
2
 Our distance data are therefore restrictive in two ways. First, since we only observe a single latitude and longitude 

coordinate per city, we cannot calculate distances between inventors within a city or even be completely precise 

about distances between those in adjoining cities. Second, what the USPTO data contain is the city of residence of 

the inventor, which might sometimes not coincide with the city of where the inventor works. Patents do not always 
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Based Statistical Areas (CBSAs),
 
which reflect metropolitan area commuting patterns and discard the 

small fraction of patents not falling within any CBSA.
3
  

Before proceeding to construct a sample of patent pairs representing actual or potential citations, 

we restrict the cited patent sample to only patents whose geographic origin is unambiguously defined in 

order to avoid making arbitrary assumptions in trying to resolve locational ambiguity of a knowledge 

source. In other words, we exclude patents from geographically dispersed inventor teams, even though 

these might be an interesting (but different) topic to study. We also omit patents not assigned to any 

organization as well as those to non-firm sources (such as universities and government bodies) as the 

focus of this study is to examine inter-firm diffusion of knowledge. In the end, all the steps mentioned 

above yield a set of 631,586 potentially cited patents as sources of knowledge.  

 

2.2. Constructing a matched sample of actual and potential citations 

For each cited patent mentioned above, we collect data on all citations received during a 10-year window 

since its application and drop all within-firm citations. As a highly influential study by Jaffe, Trajtenberg 

and Henderson (1993 – hereafter, “JTH”) points out, just calculating collation frequency within pairs of 

patents involved in realized citations would not suffice for establishing geographic localization of 

knowledge. Instead, what is needed is an appropriate control sample of potential (but unrealized) citations 

to establish a benchmark level of collocation expected given the existing geographic distribution of 

technological activity. To facilitate a comparison of our subsequent analysis with the JTH method, we 

therefore also start with their approach of matching each citing patent to a random control patent with the 

same three-digit technology class and application year as the original citing patent (but not from the same 

organization as the focal cited patent and also not actually citing it). Like JTH, we drop the small fraction 

of citations for which no match is found. This leads to a balanced sample of 4,007,217 realized citations 

(based on 631,586 cited patents) and exactly as many unrealized matched control citations.  

The above JTH-style sample allows us to compare the extent of geographic collocation of the 

source and destination for the original citations versus control pairs, in turn using the country, state and 

metropolitan area as the geographic units of analysis in three different sets of calculations. While a useful 

                                                                                                                                                             
contain assignee address; even when present, this is often for the firm’s headquarters. Thus inventor residential city 

is the best proxy for the invention’s location; we control for possible commuting distances using metropolitan area.  
3
 We found that about 15.3% of U.S. patents could not be matched to metropolitan area definitions (such as MSA, 

PMSA or CMSA) used in prior studies like Thompson (2006). We did not want to prevent dropping such a large 

fraction simply by relying upon the common approach of defining a “phantom metropolitan area” per state to handle 

the large number of exceptional cases, as doing so could confound metropolitan area effects with state effects. 

Therefore, we rely on a more comprehensive concordance between U.S. cities and the 2003 definitions of 

metropolitan areas from the U.S. Office of Management and Budget. Employing these so-called CBSAs has two 

benefits. First, they are more comparable in covering reasonable commuting distances for population centers across 

the U.S. Second, they allow mapping a larger fraction - over 96.3% instead of 84.7% - of U.S. patents to 

metropolitan areas. Our main results are, however, robust to using the older definition of metropolitan areas.  
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starting point, this approach is not well-suited to directly addressing our question: How much do national 

or state borders per se constrain knowledge flow, as opposed to the observed effects at these levels being 

manifestations of mechanisms that in fact operate at more local levels (such as city or CBSA) being 

driven purely by geographic distance? Our preferred approach for answering these questions is a 

regression framework that can simultaneously examine the effect of different geographic levels.  

 

2.3. A regression framework for estimating citation likelihood 

With collocation within a certain pre-defined geographic unit of analysis as the dependent variable in the 

JTH model, one cannot easily examine multiple geographic levels at the same time. One could try to 

ascertain the relative importance of different geographic levels by somehow comparing the findings 

across models; however, this would likely remain a statistically complex and unsatisfactory exercise. We 

instead rely on a regression framework that estimates likelihood of citation between two random patents, 

making the existence of a citation between a pair of patents the dependent variable and employing the 

entire set of geography-related variables simultaneously as explanatory variables in a single model.
 4
 

Our citation-level regression framework has the added advantage of flexibility in modeling 

technological relatedness between patents, allowing multiple levels of technological granularity to be 

considered at once. This addresses a challenge previous studies have faced in having to choose a 

specific technological granularity in constructing a JTH-style control sample. As Thompson and Fox-

Kean (2005) and Henderson, Jaffe and Trajtenberg (2005) discuss, one faces a dilemma in using 

matching: the three-digit technology match commonly employed might be too crude to capture all 

relevant technological relationships, but using a finer classification could suffer from selection bias 

because a match would not be found for most of the sample. Both articles suggest a regression 

approach that simultaneously accounts for technological relatedness at multiple levels of granularity.
5
  

A seemingly straightforward (yet incorrect) extension of the JTH methodology might be to 

employ a regression approach using a JTH-style matched sample in a (logit or probit) regression 

model, wherein the existence of a citation between a pair of patents is taken as the dichotomous 

dependent variable. However, this would imply that the matching procedure was in effect used to carry 

out sampling based on the dependent variable in the first place, since the JTH method draws a “zero” 

(unrealized citation) corresponding to each “one” (actual citation). This needs to be somehow 

corrected for in order to avoid biasing the estimates. Further, the potentially citing patents used in 

                                                 
4
 Our methodology builds upon studies such as Sorenson and Fleming (2004) and Singh (2005) that also model the 

citation likelihood between patents in a regression framework, though to study different research questions. 
5
 This does not fully address the issue that no technological classification system – howsoever finely defined – can 

perfectly capture true technological relationships between patents. We address this concern later in the paper by 

extending our JTH-style as well as regression analysis using an approach motivated by Thompson (2006). 
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constructing the control pairs are drawn only from technology classes and years from which citations 

to the cited patent actually exist, ignoring the population of potentially citing patents from the 

remaining technology classes and years. As the technical appendix explains, this can further bias the 

results. Here, we describe a micro-level citation regression framework that ameliorates these issues.  

Before discussing how we need to extend our matched sample to carry out patent-level 

regression analysis, it is useful for exposition to first imagine a sample of patent pairs (either realized 

or unrealized citations) constructed by pairing each of our initial set of potentially cited patents with a 

random draw of potentially citing patents. We could model the likelihood of a patent citation in this 

sample as a Bernoulli outcome y that equals 1 with a probability  

ixii
e

βxxxy





1

1
)()|1Pr(  

Here, i is an index for the sample of potential citations (i.e., patent pairs), xi represents the vector of 

covariates and controls (described later), and  is the vector of parameters to be estimated.  

Since the likelihood of a focal patent being cited by a random patent is extremely small, it is 

not practical to carry out the estimation based solely on the dataset constructed by using random 

sampling from the population of all potentially citing patents. Instead, consider employing a “choice-

based” sample, wherein the sampled fraction  of potentially citing patents that actually cite a focal 

patent is much larger than the fraction  of the patents that are not involved in a real citation to it. It is 

worth noting that a usual (unweighted) logistic estimation based on such a sample would lead to biased 

estimates, since the sampling rate here is different for different values of the dependent variable.
 
One 

way to avoid the bias is to use the weighted exogenous sampling maximum likelihood (WESML) 

approach, which involves a modified logistic estimation based on first weighting each observation by 

the reciprocal of the ex ante probability of its inclusion in the sample (Manski and Lerman, 1977).
6
 

The basic WESML approach as described above is based on employing a sample where the 

“zeroes” are drawn from the population of unrealized citations with the same ex ante likelihood. 

Recognizing that technological relatedness is a particularly strong driver of citation likelihood between 

patents, we can refine the choice-based sampling approach further to also get benefits from 

stratification on this explanatory variable. This implies allowing the parameter  to vary across 

different y=0 subpopulations (Manski and McFadden, 1981; Amemiya, 1985, Ch. 9).  

Indeed, by carefully considering the respective subpopulations (defined by different 

technology classes and years of origin) from which we have effectively drawn our JTH-style control 

patents in the previous section, we can interpret our matched sample as above and appropriately 

                                                 
6
 See the Appendix for further detail. See also Greene (2003, Ch. 21) for a discussion of choice-base sampling. 
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calculate the weights to use with each control pair. However, as the technical appendix explains in 

more detail, this is not sufficient in itself. Using the WESML approach with the matched sample also 

requires extending the sample to ensure representation of potentially citing patents belonging to years 

and/or technology classes not represented in the original patent citations (and hence in the resulting 

matched sample). Doing so ensures that the strata considered are not only mutually exclusive but also 

exhaustive in representing the full population of potential citations. The above steps lead to our final 

sample of 13,728,582 patent pairs, which includes 4,007,217 actual citations (taking =1), 4,007,217 

JTH-style matched pairs and 5,714,148 additional pairs from citing classes and years not represented 

in the matched sample. An example included in the technical appendix further illustrates the above 

sampling procedure as well as calculation of appropriate weights for all the control observations.  

Rather than making specific assumptions about the temporal pattern of citations, we account 

for variation in citation likelihood with citation lag (i.e., years elapsed between the cited and citing 

patents) non-parametrically—that is, by including among the covariates the full set of indicator 

variables for different lags. We also include indicators for the cited patent’s technological category and 

the citing patent’s year of origin to account for systematic differences across sectors or over time.
7
 

Finally, since the citation probability might also be driven by other characteristics of the cited patent, 

we control for observables and cluster standard errors to account for unobserved ones.  

 

3. EXTENDING THE TRADITIONAL MATCHING APPROACH  

Before turning to our regression approach in the next section, we present some analysis that extends 

the more traditional JTH-style analysis. This should allow a reader familiar with prior literature to 

relate our study better to existing research in terms of both what kind of findings remain similar across 

the two approached and what new insights emerge specifically from using the regression approach.    

  

3.1. Baseline analysis comparable with prior work 

Following the empirical approach of JTH, we compare the incidence of geographic collocation of the 

potential knowledge sources as represented in actual citations as well as matched control pairs, in turn 

using the country, state, and metropolitan area as the geographic units of analysis. As the side-by-side 

comparison in Table 1 shows, our findings at each of the three units of analysis are quite comparable 

to those reported by JTH as well as a replication by Thompson and Fox-Kean (2005). The incidence of 

collocation for all three geographic units is statistically and economically greater between actual 

                                                 
7
 Our goal here is simply to control for citation lag and citing year effects without trying to identify one of these 

effects separately as in studies such as Rysman and Simcoe (2008). Given that perfect collinearity would result if 

citation lag and citing year effects are included as the usual sets of indicators, we omit one of the indicator variables. 
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citations and the corresponding matched control pairs: 74.7% vs. 57.6% at the country level; 13.4% vs. 

6.2% at the state level; and 7.6% vs. 2.6% at the metropolitan level.
8
 

 

3.2. Further investigation of the border effects 

Again, it is difficult within the JTH framework to separate the extent to which localization spillovers 

are driven primarily by political borders, spatial proximity, or both. A full analysis will have to wait 

until we report findings from our regression approach below. However, we can carry out at least some 

informative analysis even within the JTH framework. In doing so, we focus in particular on the 

robustness and nature of the state border effect because, although localization at the country level 

might be less surprising given the well-documented linguistic, cultural, administrative and economic 

differences between countries (Coe, Helpman and Hoffmaister, 2009), the presence of a localization 

effect truly associated with state borders within a country like the U.S. would probably be puzzling.  

Staying within the JTH framework, a first step in separating border and proximity effects is 

determining whether the state finding might be driven by observations that are also geographically 

distant from the state border. We therefore analyze diffusion of only knowledge originating near a 

state border to see if there is on average a state-border effect even for these in order to ensure that 

within-state localization reported above is not just a distance effect driven by cited patents in a state’s 

interior. Specifically, columns (1)-(4) in Table 2 report findings from a JTH-style analysis using a 

subsample where the distance of a potentially cited patent’s originating town or city to the closest state 

border is not more than 20 miles. Under the null hypothesis that state borders play no role in 

knowledge diffusion and that the previous findings were somehow driven by observations that are 

distant from the state borders, one would expect state-level localization to become difficult to observe 

for these observations. Comparing column (2) in Table (1) with column (2) in Table (2), we find that 

not to be the case. Even though state-level collocation in column (2) is substantially lower for citations 

in the near-border sample than the whole sample (7.1% in Table 2 vs. 13.4% in Table 1), the matched 

pair sample collocation incidence is also substantially lower in the near-border sample than the whole 

sample (2.7% in Table 2 vs. 6.2% in Table 1) so that the ratio reported calculated in column (4) is in 

fact higher in Table 2. In other words, taking account of geographic distribution of technological 

activity, we find no evidence that mere distance is driving the state effect reported earlier. 

While the above analysis based on a subset of cited patents (representing the source of 

knowledge) originating near a state border increases confidence in the possibility that state borders do 

                                                 
8
 When Thompson and Fox-Kean subsequently employ nine-digit technology matching, they find that over two-

thirds of their patents cannot be matched. Our approach is instead to stick to a three-digit initial match but control 

for a finer technological level through additional variables introduced directly into our regression model. 
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indeed have an independent effect, columns (5)-(8) refine this by restricting the set of potentially citing 

patents to those that originate within one of two states separated by the state border under 

consideration.  For example, for a cited patent from Haverhill, Massachusetts (near the New 

Hampshire border) we would consider only (potential) citations from either Massachusetts or New 

Hampshire. Given that the citing patents in the matched pairs in our original sample could be from 

anywhere, this analysis relies on a new matched sample appropriate to the task purpose. Specifically, a 

control patent is now generated by matching the citing patent to a patent not just from the same 3-digit 

technology class and the same year but also originating from within the state dyad being considered.  

The interpretation of the results reported in columns (5)-(8) is that, in a sample comprising 

only dyads of neighboring states, knowledge generated within 20 miles of a state border is still much 

more likely to be used within its state of origin than the neighboring state (after, as before, adjusting 

for geographic distribution of different technology classes). In other words, the finding of a state 

border remains qualitatively robust to using this alternate methodology.
 9
 Since we use a new sample 

that restricts actual and potential citations to be between neighboring states within the U.S., note that 

country border effects have been filtered out (so country-level analysis is no longer carried out) and 

that the reported numbers are also not comparable with the findings from columns (1)-(4).  

One interesting feature of U.S. geography is that 34 of the 270 CBSAs include more than one 

state. For example, the CBSA containing Cincinnati, Ohio also extends into sections of Kentucky and 

Indiana. This allows us to test the border effect by examining whether in-state localization exists even 

for knowledge flows within such CBSAs. Specifically, columns (9)-(12) report the findings based on a 

subsample of the data in columns (5)-(8) where the observations only include cited patents originating 

in a multi-state CBSA. The observations are further restricted to citations coming from within the 

CBSA that are also matched to control citations also within the same CBSA. By construction, 

metropolitan effects have therefore been filtered out (so CBSA-level analysis is no longer carried out). 

Difference of means between incidences of geographic co-location within the state for actual citations 

versus corresponding controls remains statistically significant. Although their ratio is now much 

smaller, it should be noted that this is a very conservative test using a smaller, highly restrictive 

within-CBSA sample. Thus, just the fact that we find any state-border effect in this case is perhaps in 

itself quite remarkable. To a skeptic, this could be an indication instead that the state border effect is 

perhaps not as strong as it is made out to be in the earlier analysis. At this point, we are agnostic to an 

exact interpretation – preferring instead to address this debate in our regression framework where we 

                                                 
9
 In choosing the sample of cited patents near state borders, we have reported findings based on a cut-off of 20 miles 

as a compromise between being close to the border and having a reasonable sample size. In the spirit of Holmes 

(1998), we actually tried out progressively smaller windows starting from 50 miles and going all the way down to 

those within 5 miles of a state border. The findings remained robust in supporting of a state border effect. 
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are able to employ our full sample while still carefully accounting for spatial proximity in terms of 

both metropolitan co-location as well as geographic distance more generally. 

 

3.3. Long-term time trends 

Our sample size is orders of magnitude larger than those employed in previous studies, so we can carry 

out more detailed analyses reported in Table 3. Columns (1) through (4) segment our cited patents 

drawn from 1975-2004 into six five-year periods.
10

 Localization of knowledge spillovers remains 

robust across all periods for all three geographic units. Further, we can examine the time trends by 

taking the ratio of collocation frequency for inventor pairs comprising actual citations vs. matched 

controls reported in column (4) as an indicator of the strength of the geographic effects. What is rather 

striking is that – despite much talk about globalization and decreasing relevance of geographic 

separation - the role of geography appears to have increased rather than decreased over time. Given 

that the JTH framework only analyzes each geographic unit in isolation, this analysis is however not 

able to disentangle whether the time trends are reflective primarily of underlying border effects, 

proximity effects or a combination of the two. We will therefore return to this issue later in the context 

of our preferred regression framework that accounts for all geographic effects simultaneously. 

 

3.4. Inventor vs. examiner citations 

Recent work has noted that many patent citations are included not by the inventors themselves but 

later by patent examiners (Alcacer and Gittelman, 2006). Therefore, it is useful to carry out analysis 

complementary to the above by examining just inventor-added citations, since these might arguably be 

more likely to reflect prior art that an inventor was aware of in coming up with the focal invention.
11

 

Columns (5) through (8) of Table 3 report the JTH-kind analysis based only on the subsample of 

citations added by inventors (and the corresponding controls). Since the inventor/examiner distinction 

is only available for citations post-2001, these calculations are reported only for the cited patent 

originating during one of the three five-year periods for which the citation window overlaps with 

availability of this information for a significant fraction of the citations. Comparing the extent of the 

localization effect calculated in column (8) versus column (4) reveals that a focus on just inventor-

added citations significantly strengthens the geographic localization for all three geographic units of 

analysis. Unlike the results in column (4), the results in column (8) do not show any time trends – 
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 The sample size drops during the last five year period (2000-2004) because, while the earlier periods employ a 

full ten-year citation window, for this period we only observe citing patents through 2009. 
11

 In addition to the fact that the inventor vs. examiner distinction is readily available only post-2001, a case can be 

made in favor of considering all citations rather than just inventor citations because inventors often deliberately omit 

reference even to relevant patents they know about due to strategic reasons (Lampe, 2011). From this point of view, 

analyzing just inventor citations is a more of a useful robustness check than necessarily always superior. 
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though that is largely reflective of the fact that the analysis cannot even be carried out for the first three 

periods due to unavailability of the inventor vs. examiner distinction for citing patents pre-2001.  

Thompson (2006) exploits the inventor/examiner distinction to come up with a way to address 

a fundamental challenge with use of a JTH-style matching approach: since even the finest available 

technological classification might not capture some unobserved technological characteristics driving 

both patent citation patterns and geographical co-location, it is hard to make definitive statements 

about geographic co-location leading to increased knowledge diffusion. He suggests an identification 

strategy wherein one ought to take greater geographic localization for inventor-contributed citations 

only relative to that for citations added by examiners (who are “geography blind” and hence form an 

appropriate benchmark for comparison) as reliable evidence of localized knowledge spillovers. To be 

able to use this suggested benchmark in analyzing inventor citation findings from columns (5)-(8), we 

report analysis using just examiner-added citations (and corresponding matched controls) in columns 

(9)-(12). Comparing columns (8) and (12), the calculated ratio between collocation incidence for 

realized citations vs. matched patent pairs is found to be higher in all cases for inventor-added citations 

than for examiner-added citations, further establishing the robustness of the finding on geographic 

localization of knowledge spillovers. However, this still does not disentangle border vs. proximity 

effects through a simultaneous examination, for which we need to use our regression framework.      

 

4. ANALYSIS USING OUR WESML REGRESSION FRAMEWORK  

4.1. Simultaneous examination of multiple geographic levels 

We now turn to the regression framework to simultaneously examine national and state borders after 

accounting for proximity effects related to metropolitan (i.e., CBSA) co-location and geographic 

distance. Table 4 summarizes the variables used in our analyses. Before trying to disentangle borders 

and proximity, however, it is instructive to get an overall sense of diffusion and geography. The 

analysis reported in column (1) of Table 5 is the simplest way of seeing this. The WESML regression 

estimates have an intuitive interpretation in terms of how an explanatory variable drives the likelihood 

of citation between random patents in the population, with the fact that citations are rare events making 

it possible to in fact directly interpret the logistic model coefficients as percentage effects on citation 

likelihood.
12

 Column (1) implies that the likelihood of citation falls by 36% with a doubling of 

distance. (Again, distance is measured between inventor cities, not exact addresses.) 

                                                 
12

 In a logistic model, the marginal effect for a variable j is βj ’(xβ), which turns out to equal βj (xβ)[1-(xβ)]. In 

general, this would need to be calculated based either on the mean predicted probability or using the sample mean 

for (xβ). But the fact that citations are rare events allows further simplification: since (xβ) is much smaller than 1, 

βj (xβ)[1-(xβ)] is practically equivalent to βj (xβ). This means the coefficient estimate for βj can be directly 

interpreted as the percentage change in citation probability with a unit change in variable j. 
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The analysis reported in column (2) also includes relevant control variables. Most importantly, 

the regression framework allows us to control for technological similarity and relatedness between 

patents using a series of associated variables rather than only relying on matching using three-digit 

technology class.  The findings in column (2) imply that the likelihood of citation now falls by 27% 

with a doubling of distance – the difference between the column (1) and (2) estimates being driven 

mainly by the new technology controls. In line with the JTH argument, we find knowledge flows 

within the same or related technologies to be stronger than those across different technologies, as 

indicated by the positive and significant estimates for same tech category, same tech subcategory, 

same tech class and relatedness of tech classes. Noting that the Thompson and Fox-Kean (2005) 

critique regarding the inadequacy of three-digit technological controls, we have also included a control 

variable to capture overlap between the citing and cited patent along their secondary nine-digit 

technology subclasses (overlap of tech subclasses) and find that to have a strong effect as well.  

Setting the geographic distance variable aside for now, columns (3), (4) and (5) successively 

introduce variables for co-location at three geographic levels: the country (same country), the state 

(same state) and the metropolitan area (same CBSA). The estimate for same country falls a little once 

same state is introduced in going from model (3) to model (4), and that the estimate for same state 

falls drastically once same CBSA is introduced in moving from model (4) to model (5). This highlights 

the benefit of using a regression approach to disentangle effects at the various geographic levels by 

simultaneously considering all three levels rather than relying just on separate analysis for each. In 

terms of magnitude, column (5) estimates imply a 77% greater likelihood of within-country knowledge 

flow than across national borders, a 41% greater likelihood for within-state flow than that across state 

borders, and 77% greater likelihood for within-CBSA flow than that across CBSA boundaries. 
13

   

Simultaneously considering multiple geographic units indicates that there is more to the 

national and state border effects than a mere aggregation of localization mechanisms operating at the 

metropolitan level.  The estimates in column (5), however, do not rule out the possibility that such 

effects are not epiphenomenal with spatial distance since including the CBSA co-location variable 

does not account for distance-related effects that might be more gradual than CBSA collocation. To 

this point, the model in column (6) now also includes our distance variable from before. As expected, 

with geographic proximity now better controlled for through the combination of metropolitan co-

location and distance, both border effects become smaller. Interestingly, the drop is much larger for the 

same state effect than the same country effect. (Strictly speaking, despite our footnote about 
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 If we carry out this analysis excluding the 9-digit technology control, geographic localization on all three 

dimensions turns out to be larger – with the difference being the greatest for metropolitan collocation. This is in line 

with intuition that geographic concentration of technological activity—which is what our technology-related control 

variables account for—is greater when viewed at a finer level of granularity for technology. 
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interpretation of coefficients as percentages, coefficients are not directly comparable across columns 

(5) and (6) due to different reference categories. But the above holds even after adjusting for that.)  

To allow more flexibility in how distance constrains knowledge flows, column (7) repeats the 

analysis with a series of indicator variables for distance ranges. These fine-grained distance indicators 

are mutually exclusive, covering increasing distances starting in the sequence distance 0 miles (i.e., 

same city), distance 0-10 miles, and so on. The omitted category is distance greater than 6,000 miles.  

This non-parametric approach does not impose any functional-form assumption on how distance might 

affect the likelihood of citation, ensuring that the same country and same state variables more 

accurately measure border effects independent of geographic proximity. (Even more fine-grained 

indicators did not materially alter findings.)
 
Not surprisingly, estimates for the distance indicators 

themselves reveal that knowledge flows are greatest when the source and recipients are collocated 

within the same city (i.e., distance = 0) and that the distance effect gradually falls (more or less 

monotonically) with distance. Once more, however, we find statistically and economically significant 

estimates for same country and same state even after we have accounted for geographic proximity 

using same CBSA and distance indicators. (Note that it is hard to directly compare same country and 

same state coefficients across columns (6) and (7) as the latter has a large number of new variables in 

the form of distance indicators.) This finding challenges an interpretation that localized knowledge 

diffusion reported by previous studies is merely a manifestation of intra-regional distances being on 

average smaller than cross-regional distances.
14

 

 

4.2. Further investigation of the border effects 

We now examine subsamples to figure out whether our findings are driven by particular kinds of 

patents. As already mentioned, one concern might be whether the state-level finding is driven by 

observations that are quite distant from the state border. Analogous to the near-border analysis 

presented for the JTH approach, we analyze diffusion of knowledge originating near state borders to 

see if there is on average a similar state-border effect even for these. Specifically, we look at the subset 

of potentially cited patents that lie within 20 miles of a state border. As column (8) in Table 5 

indicates, the findings for the near-border cited patent sub-sample turn out to be very similar to those 

from the full sample (column (7)), including the same-state effect.  

Next, we subset our sample by removing California as Silicon Valley has been often described 

as an outlier for diffusion (Almeida and Kogut, 1999). As the top state in terms of patenting activity 
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 In additional analysis, we tried models with indicators for contiguous countries and contiguous states to 

distinguish cases where the source and destination share a border. While we did find knowledge flow to be more 

intense between contiguous regions, we found that independent country and state border effects persist. 
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and one of the largest in terms of area, one might worry that our results depend on California in ways 

that state fixed effects do not capture. In column (9) of Table 5, both country and state localization are 

found to be robust to excluding California. To further investigate whether our findings are state-

specific, in analysis not reported to conserve space, we also carried out analogous analyses for cited 

patent subsamples from the ten largest patenting states. The findings revealed that, in six of these ten 

cases, observed state-level localization of knowledge originating within the state borders could not be 

completely explained simply by geographic proximity effects in the form of metropolitan co-location 

and/or shorter geographic distances. In other words, the finding is not driven by just one or two 

specific states. In fact, California turned out to be one of the minority cases where state borders do not 

seem to have an effect independent of distance (but CBSA boundaries like those of the Silicon Valley 

still do), suggesting that – once one crosses out of areas like Silicon Valley – knowledge is no longer 

further constrained by the borders of California over and above effects related simply to distance.  

Next, we turn to checking whether the results could similarly be driven by specific sectors. To 

start with, we exclude the one-digit NBER technology category Computers & Communications – a 

sector many scholars consider to be unique. As column (10) in Table 5 shows, the results are 

qualitatively unchanged. To further investigate if our findings are sector specific, we also carried out 

(but omit for space) separate analyses for cited patent subsamples from all six different one-digit 

NBER categories. The findings revealed that the findings are not driven by a specific sector. In fact, in 

five of the six cases, observed state-level localization of knowledge could not be completely explained 

simply by geographic proximity effects, the only exception being the category Hall, Jaffe and 

Trajtenberg (2001) label “Others”. Similarly, repeating the analysis with two-digit NBER sub-

categories reveals robust, independent state border effect for 30 of the 36 subsamples. Thus the state 

border finding appears not to be clearly driven by one or two specific states or sectors. We next 

investigate whether border effects are driven by particular time periods as opposed to being persistent. 

 

4.3. Long-term time trends  

Before disentangling long-term trends in border and proximity effects, it is useful to start with an 

overall sense of how the role of geography in knowledge diffusion has evolved over time. With this 

view, column (1) in Table 6 extends the analysis from column (2) in Table 5 by adding an interaction 

term period * ln(distance + 1) between the distance variable and the time period variable capturing the 

five-year period when the cited patent originated. (See Table 4 for detailed definition.) 
15

 Surprisingly, 
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 Recall that our analysis is carried out with a set of indicators for the time period of origin for the cited patent and 

for the time lag between the cited and citing patents. Since our citing as well as cited patents are of different vintage, 

our sample allows separately identifying cohort effects and citation lag effects in a way that previous studies with 

more restrictive samples (such as Thompson( 2006)) were not able to. 
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and contrary to the widespread notion that the importance of distance has been eroding over time due 

to globalization and technological advancement, the decay in citation rate with distance seems to have 

increased over time, albeit the economical magnitude of this is not too large. 

In column (2), we turn to disentangling time trends in the border vs. proximity effects, with the 

goal of figuring out whether the role of political borders has strengthened or weakened over time once 

proximity is accounted for. In addition to the distance variable, we re-introduce our other three 

geographic variables – same country, same state and same cbsa, but now also bring in their interaction 

effects with the time variable period. The trends turn out to differ across different variables: the effect 

of national borders seems to have increased over time while that for state borders and CBSA 

boundaries has decreased. Additional analyses in columns (3) and (4) add distance indicators and the 

full set of distance-period indicators respectively in order to more completely account for any distance-

related effects and trends not captured above. The finding on the opposite time trends for country vs. 

state borders remain qualitatively robust, with the country effect still strengthening over time and the 

state effect weakening. However, the CBSA finding is more fickle, becoming statistically insignificant 

in column (3) and ultimately flipping sign to become positive (and statistically significant) in column 

(4). This might be due to the high correlation between the distance indicators and same cbsa. 

As the model with the least functional form restrictions on distance, column (4) represents our 

specification of choice. Following Greene (2009), we interpret the results for the interaction terms in 

this non-linear model graphically by calculating the average predicted effect of a 0 to 1 transition for 

each of our variables - same country, same state and same cbsa. Specifically, by carrying out this 

exercise for the subsamples from different time periods, we plot the predicted effects for different 

periods in Figure 2. Examining the ratio of the predicted effect for the case where a specific variable 

(such as same country) is set to 1 vs. 0 helps comment on the economic magnitude of the trend. For 

example, the ratio between the cases with same country being 1 versus 0 increases from 1.42 in 1975-

1980 (predicted probabilities of 5.0 in a million for same country = 1 vs. 3.5 in a million for same 

country = 0) to 1.66 in 2000-2004 (4.4 in a million vs. 2.7 in a million). On the other hand, the ratio 

between the cases with same state being 1 versus 0 decreases from 1.38 in 1975-1980 (citation 

probabilities of 5.9 in a million for same state = 1 vs. 4.3 in a million same state = 0) all the way down 

to 1.15 in 2000-2004 (predicted citation probabilities of 4.3 in a million vs. 3.8 in a million). We have 

offered a similar chart for CBSA for completeness; however, as our distance variable is based on the 

same single latitude and longitude value for all data from a city, we consider it too noisy to very 

reliably disentangle micro-level distance effects from CBSA effects. We therefore suggest extra 

caution in interpreting the findings regarding the CBSA effect, and largely treat that as a control 

variable for our purposes rather than discussing it extensively. 
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By employing interaction terms based on the period variable in the analysis above, we have 

been able to formally examine whether there are any long-term trends in knowledge diffusion patterns. 

However, for readers interested in more precise period-by-period findings that do not impose linear 

restrictions, in column (5) we report  findings from interacting the geography variables with indicators 

corresponding to the six 5-year periods comprising the overall 30-year period 1975-2004 from which 

our cited patents sample is drawn. The omitted (reference) period for these interactions is the first 

period, namely, 1975-79. We observe that, relative to the border effects prevalent during 1975-79, the 

country border effects are stronger in four of the five subsequent periods (and statistically 

indistinguishable in the remaining one). On the other hand, relative to the same baseline period, the 

state border effects are weaker in three of the five subsequent periods (and statistically 

indistinguishable in the two remaining ones). Overall, these results are consistent with the time trends 

documented in the earlier analysis: country-level localization seems to have strengthened over time 

while state-level localization has diminished.
16

   

 

4.4. Inventor vs. examiner citations  

Having discussed some of the findings using our preferred regression approach that allows us to 

disentangle political border vs. geographic proximity effects in observed patterns of knowledge 

spillover localization, we now revisit the issue that many citations are generated not by inventors but 

by patent examiners. For easy interpretation, logistic regression estimates for the inventor versus 

examiner subsample are first separately reported in columns (1)-(3) and columns (4)-(6) respectively 

of Table 7. This is followed by the last three columns that examine the two subsamples together in a 

single multinomial logistic framework in order to allow more rigorous inference. As noted in section 

3.4, unavailability of pre-2001 data on the inventor vs. examiner-added citation distinction restricts our 

analysis to patents receiving a meaningful number of post-2000 citations and thus reduces the number 

of observations considerably compared to Table 5. This restriction also makes it impossible for the 

inventor versus examiner distinction to shed further light on the long-term time trends.  

We start with side-by-side analyses of the inventor-added citations subsample (which includes 

not only actual citations but also controls matched to those) in columns (1)-(3) and the examiner-added 

citations subsample (which also includes actual citations and corresponding controls) in columns (4)-

(6) in Table 7. We begin by comparing columns (1) and (4) so as to assess the overall geographic 

effect. When not simultaneously accounting for political borders, the role of proximity appears to be 
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 One might wonder about the extent to which the temporal patterns in border effects could be an artifact of changes 

in sectoral composition in patenting activity. This turns out not to be important. In analysis not detailed here, we find 

that the increase in country-level localization as well as the drop in state-level localization is a more general 

temporal phenomenon than being driven simply by increasing dominance of specific sectors. 
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confirmed as the coefficient on ln(distance = 1) variable is almost twice as large for citations added by 

inventors than by examiners. However, simultaneously considering all our geographic units 

representing political borders and spatial proximity in the remaining columns questions whether a 

large part of the overall effect is truly comprised of an impact of proximity per se. The difference 

between the coefficients on ln(distance + 1)  for columns (2) and (5) does not appear that large relative 

to the big gap between the two in columns (1) versus (4). Similarly, the coefficients on same CBSA are 

not too different between columns (2) and (5) and in fact become virtually indistinguishable between 

columns (3) and (6) as distance is accounted for non-parametrically in the form of our full set of 

indicator variables. This reinforces the concerns expressed by Thompson and Fox-Kean (2005) and 

Thompson (2006) that knowledge spillovers reported in earlier studies might to a significant extent 

have been a manifestation of the USPTO classification system (or, for that matter, any formal 

classification system) only imperfectly capturing true technological relationships across patents.  

The previous finding on the influence of political borders, however, is not diluted as much by 

the inventor/examiner distinction. Comparing the estimates for same country in columns (2) and (3) 

with those in columns (5) and (6) respectively, examiner-added citations in fact show no country-level 

localization while the effect for inventor citations is economically and statistically highly significant. 

The state-level result also remains robust. However, although the same state coefficient is statistically 

insignificant for the examiner-added citation analysis in column (5), it turns significant for the 

preferred specification in column (6) once distance is accounted for in a non-parametric fashion. Still, 

the magnitude of the coefficient on same state in column (3) remains considerably larger than that in 

column (6). The relative weakness of the same state effect in this analysis might in part be due to the 

limited timeframe of the inventor-vs-examiner distinction, as we are able to observe patents only in the 

latter portion of our 30-year window. Recall from the earlier time trends analysis that  the same-state 

effect was anyway weaker during this time period when considering all citations together. If we did 

have the inventor/examiner distinction data available for the earlier part of our sample, it is 

conceivable that the state effects might have been stronger. 

Directly comparing estimates from non-linear regressions employing different subsamples 

(inventor vs. examiner citations) relies on our earlier observation that these estimates have a natural 

interpretation in percentage terms because citations are rare events. While intuitive, this approach 

leaves two open questions. First, given the different control groups for inventor and examiner 

subsamples, this direct comparison could be problematic. Secondly, it is not straightforward to test 

hypotheses regarding statistical distinguishability of estimates across different models. To address 

these concerns, we pool the two subsamples and run the analysis as a single (weighted) multinomial 

regression for the three mutually exclusive and exhaustive outcomes possible for any pair of random 
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patents: Inventor Citation, Examiner Citation and No Citation. The multinomial logit results reported 

in columns (7)-(9) take No Citation as the omitted (reference) category for ease of comparison with 

earlier column values, but we relied upon equivalent models taking Examiner Citation as the omitted 

category for testing hypotheses comparing coefficient values across inventor and examiner citations.   

We are now able to formally test the extent to which the geography-related effects for both 

political borders and spatial proximity are robust to the inventor/examiner distinction. The findings 

remain qualitatively the same. In particular, most of the distinction between the coefficients on 

ln(distance + 1) between the Inventor Citation outcome and Examiner Citation outcome disappears in 

going from column (7) to column (8). In contrast, the coefficients for same country and same state 

remain much stronger for the Inventor Citation outcome than for Examiner Citation even in columns 

(8) or (9). The only distinction from before is that even the same CBSA effect is now significantly 

stronger for the Inventor Citation case than Examiner Citation case, although the extent of this 

difference is still at least somewhat smaller than for same state effect and much smaller than the same 

country effect. Thus our main qualitative finding – that the inventor versus examiner citation 

distinction dilutes the border effects less than the geographic proximity effects – continues to hold. 

Combining with the earlier sections, we therefore find that border effects are robust and not just an 

artifact of the geographic proximity of inventors or geographic distribution of technological activity. 

  

5. Discussion, Caveats and Conclusion  

The key contribution of this study is employing a novel regression framework based on choice-

based sampling to simultaneously consider the impact of different geopolitical units in order to 

disentangle true border effects from geographic proximity effects. We also account for technological 

relatedness between the citing and cited patents at multiple levels of granularity, and further employ an 

identification approach inspired by Thompson (2006) to address concerns about unobserved aspects of 

technological relatedness. A robust finding of our study is that, on average, country and state borders 

serve as constraints on knowledge diffusion even after accounting for geographic proximity in the form of 

metropolitan co-location and geographic distance. We document that the findings are robust to examining 

only near-border samples in a variety of ways and are also not driven by just one or two specific states or 

sectors. In fact, application of the alternate identification strategy using the inventor/examiner distinction 

in citations only strengthens this finding regarding an independent effect of borders. 

The finding that national borders have a strong effect might not be too surprising. The literature 

on international trade already suggests several border-related variables one could consider for digging 

deeper, such as linguistic, cultural, political and economic differences between countries. Indeed, in 

analysis not reported here, we found knowledge flows from the United States to other English-speaking 
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countries to be particularly strong even after accounting for the effect of geographic distance. A more 

general treatment of variables used in gravity-type models from international economics would, however, 

require a sample where not just the citing but also the cited patents are drawn from multiple countries.  

What is perhaps surprising about even the country-level finding is that it has only grown stronger 

over a period which has seen the rise of information technology in general and the internet in particular. 

We take this as indication that inventors in the U.S. are disproportionately relying upon knowledge 

generated within the U.S. during a time when the fraction of patents originating overseas has been 

growing. However, this finding could also somehow be an artifact of our data. For example, absent the 

availability of inventor vs. examiner citation distinction for the full period, we cannot rule out a 

possibility that U.S. is simply getting more specialized in a way not captured by the formal technological 

classification system. If this is indeed true, we would observe U.S. patents as increasingly citing other 

domestic patents even in the absence of any true geographic trends associated with national borders. 

Turning to the counter-intuitive finding on an independent state border effect, it is worth noting 

that a few studies (e.g., Holmes, 1998) have found state-level effects in related contexts before. In fact, a 

forthcoming paper by Belenzon and Schankerman (2012) documents state borders effects specifically in 

for knowledge diffusion. However, they examine only knowledge arising from universities, leading them 

to conclude that policies promoting within-state knowledge diffusion from state-funded public 

universities could be a driver of this finding. Our study reveals that the mechanisms driving state border 

effects like these might be more general, since they apply even to diffusion of knowledge arising in 

private companies. Connecting back to the growing literature emphasizing diffusion of knowledge 

through localized networks of people and organizations, future researchers should find it interesting to 

examine how different kinds of such formal or informal networks might be originating and operating at 

different geographic levels. It also seems worth investigating further exactly which of these mechanisms 

might have weakened relatively recently, leading us to observe that the state localization effect has – 

unlike the country effect - declined over time and become quite weak by the end of our sample period.  

While further exploration of institutional  and policies seems promising for future research, we 

cannot rule out that at least some of the effects we find will turn out not to be robust using alternate 

research designs. At a minimum, therefore, we view our study as an initial inquiry into border-related 

diffusion effects  for flow of ideas, paralleling analogous studies looking to disentangling different border 

vs. proximity effects for flow of goods in the context in international trade (McCallum, 1995; Wolf, 2000; 

Anderson and Wincoop, 2003; Hillberry and Hummels, 2003, 2008). Further progress toward unpacking 

the geography of knowledge spillovers would also help refine existing theoretical models of innovation, 

entrepreneurship and growth, ultimately leading to more effective innovation-related policies. 
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Figure 1. Graphical depiction of the role of geography in patent citation likelihood 

(i) Country borders vs. distance between inventor cities 

 
 

(ii) State borders vs. distance between inventor cities 

 
 

(iii) CBSA boundaries vs. distance between inventor cities 
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Figure 2. Predicted probabilities across different time periods 

(i) Country border effect after accounting for other geographic levels 

         
 

(ii) State border effect after accounting for other geographic levels 

         
 

(iii) CBSA boundary effect after accounting for other geographic levels 
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Table 1. Replicating findings from previous studies 

 

Notes: The Jaffe, Trajtenberg and Henderson (JTH) numbers reported here were calculated based on pooling of results for their different subsamples primarily using information 

available in their Table III in a manner similar to that reported by Thompson & Fox-Kean (TFK). The TFK sample statistics are for the first sample they construct by employing 

three-digit technology matching to be comparable to JTH. While TFK subsequently construct other samples using more fine-grained technology matching, we instead rely on 

regression models to similarly account for technology more finely. Using formal t-tests confirmed that difference of means between incidences of geographic co-location for actual 

citations versus corresponding controls were statistically significant in all cases, so the t-statistics have not been reported to conserve space. 

 

Table 2. Further investigation of the state border effect 

 

 
 

Notes: To ensure that within-state localization reported above is not just a distance effect driven by cited patents in a state’s interior, columns (1)-(4) carry out the JTH-style 

analysis using a subsample of our matched sample where the distance of the cited patent’s originating town or city to the closest state border is not more than 20 miles. In columns 

(5)-(8), the set of actual citations is restricted to those arising either within the cited patents or in the closest neighboring state – with the set of control citations to use as a 

benchmark also being regenerated based on a matching with all potentially citing patents within these two states using their application year and a three-digit technology class. In 

columns (9)-(12), as an additional robustness check to distinguish the effect of metropolitan co-location from state borders, analysis has been further restricted to cited patents 

originating in CBSAs that cross state borders and having both actual as well as corresponding control citations arise within the CBSA (with one or both of them potentially still 

crossing the state border). Difference of means between incidences of geographic co-location for actual citations versus corresponding controls were statistically significant in all 

cases, so the t-statistics have not been reported to conserve space. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(2)/(3)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(6)/(7)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(10)/(11)

Country-level analysis 4,007,217 74.7% 57.6% 1.30 7,759 68.0% 61.4% 1.11 7,627 68.6% 55.6% 1.23

State-level analysis 4,007,217 13.4% 6.2% 2.16 7,759 9.7% 5.1% 1.90 7,627 7.8% 5.0% 1.55

Metropolitan-level analysis 4,007,217 7.6% 2.6% 2.92 7,759 6.6% 1.7% 3.88 7,627 5.2% 3.5% 1.50

Our matched sample Jaffe, Trajtenberg & Henderson sample Thompson & Fox-Kean 3-digit sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(2)/(3)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(6)/(7)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(10)/(11)

Country-level analysis 996,627 74.9% 58.4% 1.28

State-level analysis 996,627 7.1% 2.7% 2.63 93,703 68.4% 55.7% 1.23 40,784 87.2% 82.8% 1.05

Metropolitan-level analysis 996,627 6.1% 2.2% 2.77 93,703 55.8% 38.0% 1.47

Cited patent from near a state border Cited patent from near a state border 

and citing patent from focal state dyad

Cited patent from near a state border 

and citing patent from focal state dyad 

as well as  same CBSA as cited patent
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Table 3. Distinguishing different time periods as well as citations added by inventors vs. examiners 
 

 

Notes: Columns (1) through (4) employ exactly the same matched sample as the corresponding columns in the previous table except that the analysis has now been broken up into 

six five-year time periods based on the application year of the cited patent. The sample size drops during 2000-2004 because, while the first five periods employ the full ten-year 

citation window, the observed window is shorter for patents in this period given that we only observe citing patents until 2009. Columns (5) through (8) are based only on the 

subsample of citations added by inventors and their corresponding controls, and columns (9) through (12) are based only on the subsample of citations added by examiners and 

their corresponding controls. Since this distinction is only available for citing patents post-2001, this analysis is done only for the cited patent originating periods for which the 

citation window overlaps with availability of the inventor versus examiner distinction information for citations.  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(2)/(3)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(6)/(7)

Citations 

sample

Intraregion 

citations

Intraregion 

controls

Ratio 

(10)/(11)

Country-level analysis

1975-1979 262,657 66.7% 59.0% 1.13

1979-1984 307,090 67.5% 56.5% 1.19

1985-1989 504,546 73.4% 58.0% 1.27

1990-1994 941,141 76.1% 57.3% 1.33 360,541 85.1% 57.5% 1.48 154,186 59.7% 55.1% 1.08

1995-1999 1,496,672 77.0% 58.2% 1.32 917,811 85.4% 59.0% 1.45 495,037 62.1% 56.6% 1.10

2000-2004 495,111 75.0% 55.9% 1.34 288,992 85.4% 57.1% 1.50 203,926 60.3% 54.2% 1.11

State-level analysis

1975-1979 262,657 8.9% 4.6% 1.93

1979-1984 307,090 9.4% 4.5% 2.09

1985-1989 504,546 11.1% 4.9% 2.27

1990-1994 941,141 13.4% 5.8% 2.31 360,541 15.7% 6.1% 2.57 154,186 9.5% 5.6% 1.70

1995-1999 1,496,672 14.7% 7.1% 2.07 917,811 16.8% 7.2% 2.33 495,037 10.8% 6.9% 1.57

2000-2004 495,111 16.3% 7.3% 2.23 288,992 19.3% 7.5% 2.57 203,926 12.1% 7.1% 1.70

Metropolitan-level analysis

1975-1979 262,657 5.3% 2.1% 2.52

1979-1984 307,090 5.6% 2.1% 2.67

1985-1989 504,546 6.7% 2.1% 3.19

1990-1994 941,141 8.0% 2.5% 3.20 360,541 9.4% 2.6% 3.62 154,186 5.3% 2.3% 2.30

1995-1999 1,496,672 7.9% 2.8% 2.82 917,811 9.1% 2.9% 3.14 495,037 5.6% 2.7% 2.07

2000-2004 495,111 9.4% 2.9% 3.24 288,992 11.4% 3.0% 3.80 203,926 6.7% 2.7% 2.48

Full matched sample Inventor-added citation subsample Examiner-added citation subsample
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Table 4. Definitions of variables used during regression analysis  

  
Political border variables

same country Indicator variable that is 1 if the citing and cited patents originate in the same country, i.e., the U.S. (given that 

our cited patent sample is drawn from the U.S. only)

same state Indicator variable that is 1 if the two patents originate in the same state (within the U.S.)

Spatial proximity variables

same cbsa Indicator variable that is 1 if the citing and cited patents originate from inventors located in the same Core 

Based Statistical Area (CBSA) as per the 2003 definition of CBSAs by the U.S. Office of Management and 

Budget (CBSA definitions are meant to cover reasonable commuting distances and replace the prior 

MSA/PMSA/CMSA definitions for defining U.S. metropolitan areas in a more standardized fashion.)

distance Distance, in miles, between the cities where the first inventors of the source and destination patents live 

(calculated as spherical distance between the latitude and longitude values for these cities)

Technological relatedness variables

same tech category Indicator variable that is 1 if the two patents belong to the same 1-digit NBER technology category

same tech subcategory Indicator variable that is 1 if the two patents belong to the same 2-digit NBER technical subcategory 

same tech class Indicator variable that is 1 if the two patents belong to the same 3-digit USPTO primary technology class

relatedness of tech classes Likelihood of citation (scaled by 100) between random patents with the same respective 3-digit primary 

technology classes that the focal cited and citing patents belong to

overlap of tech subclasses Natural logarithm of one plus the number of overlapping 9-digit technology subclasses under which the patents 

are categorized

Patent-level variables

references to other patents Number of references the cited patent makes to other patents

references to non-patent materials Number of references the cited patent makes to published materials other than patents

number of claims Number of claims the cited patent makes

period A sequential number representing which of our six five year time-periods the focal cited patent belongs to: 1975-

79 being period 0, 1980-84 being period 1, 1985-89 being period 2, 1990-94 being period 3, 1995-99 being period 

4 and 2000-04 being period 5.
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Table 5. Simultaneous consideration of political borders and spatial proximity 
 

 
 

Notes: The unit of observation is pairs of patents representing actual or potential citations. The dependent variable is an indicator 

for whether or not the potentially citing patent actually cited the focal patent. A choice-based stratified sample is used, and a 

weighted logistic regression (WESML) approach is implemented using observation weights that reflect sampling frequency 

associated with different strata. The regression model also uses a constant term and indicator variables as indicated above, but 

these are not reported to conserved space and are available from the authors upon request. Robust standard errors are shown in 

parentheses, and are clustered on the cited patent. Asterisks indicate statistical significance (*** p<0.01, ** p<0.05, * p<0.1).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Full Sample Full Sample Full Sample Full Sample Full Sample Full Sample Full Sample Near-Border 

Sample

Excluding 

California

Excl Comp 

& Comm

same country 0.863*** 0.769*** 0.766*** 0.535*** 0.451*** 0.513*** 0.447*** 0.441***

(0.006) (0.006) (0.006) (0.011) (0.016) (0.032) (0.021) (0.024)

same state 0.750*** 0.405*** 0.109*** 0.228*** 0.253*** 0.346*** 0.230***

(0.017) (0.024) (0.027) (0.027) (0.047) (0.049) (0.044)

same cbsa 0.769*** 0.456*** 0.337*** 0.295*** 0.433*** 0.407***

(0.030) (0.029) (0.032) (0.071) (0.054) (0.045)

ln(distance + 1) -0.364*** -0.271*** -0.137***

(0.001) (0.003) (0.005)

distance 0  (i.e., same city ) 1.665*** 1.896*** 1.661*** 1.910***

(0.067) (0.207) (0.103) (0.095)

distance 0-10 miles 1.129*** 1.342*** 1.203*** 1.236***

(0.057) (0.112) (0.083) (0.086)

distance 10-20 miles 0.990*** 1.020*** 0.923*** 1.064***

(0.049) (0.088) (0.073) (0.070)

distance 20-30 miles 0.836*** 0.517*** 0.720*** 0.919***

(0.055) (0.108) (0.081) (0.079)

distance 30-40 miles 0.552*** 0.239* 0.386*** 0.660***

(0.071) (0.125) (0.116) (0.100)

distance 40-50 miles 0.613*** 0.433*** 0.657*** 0.802***

(0.099) (0.096) (0.071) (0.067)

distance 50-75 miles 0.595*** 0.533*** 0.583*** 0.707***

(0.040) (0.066) (0.050) (0.052)

distance 75-100 miles 0.546*** 0.529*** 0.579*** 0.665***

(0.038) (0.066) (0.049) (0.053)

distance 100-150 miles 0.599*** 0.584*** 0.614*** 0.656***

(0.033) (0.053) (0.040) (0.048)

distance 150-200 miles 0.585*** 0.553*** 0.584*** 0.670***

(0.029) (0.050) (0.033) (0.039)

distance 200-300 miles 0.479*** 0.557*** 0.491*** 0.544***

(0.029) (0.043) (0.035) (0.042)

distance 300-400 miles 0.503*** 0.520*** 0.566*** 0.567***

(0.024) (0.044) (0.027) (0.034)

distance 400-500 miles 0.479*** 0.569*** 0.508*** 0.566***

(0.024) (0.048) (0.029) (0.036)

distance 500-750 miles 0.480*** 0.494*** 0.473*** 0.519***

(0.022) (0.038) (0.027) (0.033)

distance 750-1000 miles 0.439*** 0.483*** 0.450*** 0.484***

(0.020) (0.038) (0.025) (0.029)

distance 1000-1500 miles 0.419*** 0.433*** 0.441*** 0.467***

(0.020) (0.038) (0.025) (0.030)

distance 1500-2000 miles 0.377*** 0.400*** 0.391*** 0.405***

(0.019) (0.040) (0.024) (0.027)

distance 2000-2500 miles 0.368*** 0.470*** 0.417*** 0.382***

(0.019) (0.038) (0.025) (0.028)

distance 2500-4000 miles 0.461*** 0.487*** 0.460*** 0.507***

(0.015) (0.023) (0.016) (0.021)

distance 4000-6000 miles 0.112*** 0.257*** 0.154*** 0.133***

(0.010) (0.027) (0.011) (0.012)

same tech category 1.103*** 1.115*** 1.111*** 1.108*** 1.106*** 1.107*** 1.088*** 1.102*** 0.893***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.011) (0.006) (0.007)

same tech subcategory 1.298*** 1.310*** 1.300*** 1.299*** 1.297*** 1.296*** 1.298*** 1.300*** 1.460***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.015) (0.009) (0.010)

same tech class 2.141*** 2.154*** 2.156*** 2.145*** 2.144*** 2.144*** 2.267*** 2.215*** 2.283***

(0.016) (0.014) (0.016) (0.015) (0.015) (0.014) (0.025) (0.017) (0.016)

relatedness of tech classes 1.512*** 1.604*** 1.481*** 1.518*** 1.501*** 1.502*** 1.537*** 1.650*** 1.567***

(0.129) (0.104) (0.127) (0.112) (0.116) (0.104) (0.193) (0.138) (0.124)

overlap of tech subclasses 1.687*** 1.691*** 1.686*** 1.686*** 1.684*** 1.681*** 1.716*** 1.704*** 1.845***

(0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.019) (0.013) (0.016)

ln(references to other patents + 1) 0.134*** 0.135*** 0.135*** 0.136*** 0.135*** 0.135*** 0.159*** 0.149*** 0.134***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.012) (0.006) (0.007)

ln(references to non-patent materials + 1) 0.034*** 0.034*** 0.034*** 0.033*** 0.033*** 0.033*** 0.007 0.032*** 0.039***

(0.005) (0.004) (0.004) (0.005) (0.005) (0.005) (0.008) (0.006) (0.008)

ln(number of claims) 0.092*** 0.092*** 0.092*** 0.093*** 0.092*** 0.092*** 0.110*** 0.095*** 0.082***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.010) (0.006) (0.006)

Period indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Citation lag indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Two-digit tech indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

State indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Number of observations 13,728,582 13,728,582 13,728,582 13,728,582 13,728,582 13,728,582 13,728,582 3,600,000 10,994,852 10,474,569

Pseudo-R2 0.0122 0.181 0.179 0.181 0.182 0.182 0.183 0.189 0.188 0.196

Wald chi2 124220 756991 785451 767431 759980 755320 763511 221768 616233 519519

Degrees of freedom 1 69 69 70 71 72 91 91 90 87
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Table 6. Time trends in geographic knowledge diffusion patterns 
 

 
 

Notes: All notes from Table 5 apply here as well, except that regression coefficients for the control variables as well as for the 

distance-period and distance indicators (when applicable) are also omitted to further conserve space. As indicated, distance 

indicators are excluded in the first two models since a continuous distance variable has been directly included in those models.  

(1) (2) (3) (4) (5)

Full Sample Full Sample Full Sample Full Sample Full Sample

same country 0.259*** 0.140*** 0.362*** 0.249***

(0.022) (0.020) (0.048) (0.034)

same state 0.381*** 0.367*** 0.358*** 0.332***

(0.070) (0.066) (0.074) (0.048)

same cbsa 0.616*** 0.424*** 0.125 -0.034

(0.069) (0.072) (0.087) (0.084)

ln(distance + 1) -0.224*** -0.085***

(0.008) (0.011)

period * same country 0.089*** 0.106*** 0.021*

(0.007) (0.004) (0.011)

period * same state -0.089*** -0.048*** -0.035**

(0.017) (0.016) (0.015)

period * same cbsa -0.053*** -0.026 0.048**

(0.019) (0.020) (0.020)

period * ln(distance + 1) -0.011*** -0.017***

(0.002) (0.003)

same country * period 1980-84 0.061

(0.080)

same country * period 1985-89 0.321***

(0.051)

same country * period 1990-94 0.255***

(0.047)

same country * period 1995-99 0.196***

(0.043)

same country * period 2000-04 0.147***

(0.053)

same state * period 1980-84 0.069

(0.062)

same state * period 1985-89 -0.279**

(0.133)

same state * period 1990-94 -0.011

(0.060)

same state * period 1995-99 -0.171***

(0.057)

same state * period 2000-04 -0.187***

(0.072)

same cbsa * period 1980-84 0.113

(0.114)

same cbsa * period 1985-89 0.513***

(0.133)

same cbsa * period 1990-94 0.371***

(0.100)

same cbsa * period 1995-99 0.412***

(0.095)

same cbsa * period 2000-04 0.333***

(0.119)

Distance-period indicators No No No Yes Yes

Distance indicators No No Yes Yes Yes

Period indicators Yes Yes Yes Yes Yes

Citation lag indicators Yes Yes Yes Yes Yes

Two-digit tech indicators Yes Yes Yes Yes Yes

State indicators Yes Yes Yes Yes Yes

Other control variables Yes Yes Yes Yes Yes

Number of observations 13,728,582 13,728,582 13,728,582 13,728,582 13,728,582

Pseudo-R2 0.181 0.183 0.183 0.183 0.183

Wald chi2 758828 754616 762307 778608 780425

Degrees of freedom 70 76 94 189 201
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Table 7. Inventor-added vs. examiner-added citations 
 

 
 

Notes: All notes from Table 5 apply here as well, except that regression coefficients for the distance indicators as well as control 

variables are omitted. The first six columns employ weighted logistic regressions as before, but with only inventor-added 

citations and corresponding controls included in columns (1)-(3) and only examiner-added citations and corresponding controls 

included in columns (4)-(6). The last three columns employ weighted multinomial logistic regressions based on the combined 

sample. For multinomial logistic regressions, the likelihood of inventor-added as well as examiner-added citations is estimated 

using the no-citation case as the reference category.  All analyses only include citing year 2001 onwards since inventor vs. 

examiner distinction is not available for earlier years. Given the citation window of at most 10 years, all cited patents originating 

pre-1991 therefore get dropped. 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Inventor 

Sample 

(Logit)

Inventor 

Sample 

(Logit)

Inventor 

Sample 

(Logit)

Examiner 

Sample 

(Logit)

Examiner 

Sample 

(Logit)

Examiner 

Sample 

(Logit)

Full Sample 

(Multinomial 

Logit)

Full Sample 

(Multinomial 

Logit)

Full Sample 

(Multinomial 

Logit)

Inventor Citation:

same country 1.223*** 0.753*** 1.222*** 0.754***

(0.015) (0.021) (0.014) (0.020)

same state 0.086*** 0.246*** 0.083*** 0.243***

(0.028) (0.028) (0.026) (0.026)

same cbsa 0.417*** 0.334*** 0.411*** 0.328***

(0.035) (0.041) (0.032) (0.037)

ln(distance + 1) -0.352*** -0.166*** -0.353*** -0.168***

(0.004) (0.007) (0.004) (0.007)

Examiner Citation:

same country -0.034 -0.059 -0.024 -0.055**

(0.027) (0.038) (0.015) (0.023)

same state -0.015 0.124** 0.002 0.118***

(0.056) (0.053) (0.031) (0.033)

same cbsa 0.408*** 0.328*** 0.316*** 0.239***

(0.077) (0.077) (0.044) (0.049)

ln(distance + 1) -0.173*** -0.147*** -0.163*** -0.140***

(0.006) (0.013) (0.004) (0.008)

Distance indicators No No Yes No No Yes No No Yes

Period indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Citation lag indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Two-digit tech indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

State indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

Number of observations 4,651,156 4,651,156 4,651,156 3,377,722 3,377,722 3,377,722 5,828,778 5,828,778 5,828,778

Pseudo-R2 0.157 0.162 0.163 0.192 0.192 0.192 0.159 0.163 0.164

Wald chi2 254439 262810 267886 230040 232457 233936 466765 507039 511038

Degrees of freedom 66 69 88 66 69 88 132 138 176
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Appendix: Details of Our Sample Construction and Weights Calculation 

A1. Basic Choice-Based Sampling 

Choice-based sampling involves drawing a fraction () of the “ones” and a smaller fraction () of “zeroes” from 

the population. The probability of a citation conditional on a dyad being in the sample follows from Bayes’ rule: 
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So the usual logistic estimation would lead to biased results (Greene, 2003). Since the functional form is 

still logistic, one way to correct the logit estimates is subtracting ln(/) from the constant term. However, noting 

that such a correction is overly sensitive to the assumption of the logistic functional form being completely 

accurate, Manski and Lerman (1977) suggest instead the weighted exogenous sampling maximum likelihood 

(WESML) estimator obtained by maximizing the following weighted “pseudo-likelihood” function:  
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where )1)(/1()/1( iii yyw   . As Amemiya (1985, Section 9.5.2) demonstrates, consistency of WESML 

comes from the expected value of the weighted log likelihood turning out to be the same (except for a scaling 

factor) as the expected log likelihood for the same sample resulting through random (exogenous) sampling. 

WESML can be implemented using a logistic approach by “simulating” an exogenous sample by weighting each 

observation by the number of elements it represents from the population (i.e., by the reciprocal of the ex ante 

probability of inclusion of an observation in the sample). An appropriate estimator of the asymptotic covariance 

matrix is White’s robust “sandwich” estimator. Strictly speaking, WESML is not statistically “efficient” (Imbens 

and Lancaster, 1996). Nevertheless, efficiency issue can be mitigated by employing sufficiently large samples.  

A2. Combining Choice-Based Sampling with Stratification on Explanatory Variables 

In basic choice-based sampling, the “zeroes” are all drawn from the y = 0 population with a uniform sampling rate 

(). This approach can be generalized to obtain additional benefits from stratification on key explanatory 

variables—that is, allowing “” to vary across different y = 0 subpopulations (Manski and McFadden, 1981; 

Amemiya, 1985, Ch 9). Let us define z as a label for different strata that takes values 1, 2, …, T, and note that 
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The second equality comes by assuming that the vector x includes all information about z that affects 

outcome y—that is, x is a sufficient statistic for z. (In our settings, this means our controls sufficiently capture 

technology- and year-related effects on citation likelihood.) Defining the logistic outcome as v = (z = zi and y = 

yi) rather than just y, the log-likelihood function with exogenous (random) sample would be 
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This forms the basis for deriving the pseudo-likelihood function for choice-based sampling with 

stratification. As per the WESML method, each log-likelihood function term needs to be weighted by the inverse 

of the ex ante probability of that observation being included in the sample. These weights can still be computed 

as long as the sample as well as population counts for each stratum are known. Once we have the weights wtj 

corresponding to z = t (t = 1, 2, …., T) and y=j (j = 0, 1), the required pseudo-likelihood function is given by  

 

 





n

i

Xy

i
iewC

1

)21(
1ln

   

 



n

i

iiizizii xzzwCwywyw
ii

1

01 .)|Pr(ln  and)1(where

 
Since C is independent of β, it can be ignored. Thus, a weighted logistic estimation can again be used, 

with the weights given by wi. (Note that the weights now depend not just on y but also on the stratum zi.)  

A3. Applying WESML to (Extended) Matched Samples 

This approach can be extended to matched samples such as the one we have constructed following JTH. For a given 

cited patent, since the matched patent is drawn randomly from the year and technology class of an actual citing 

patent, we can interpret each {citing year, citing class} combination as a different stratum and calculate the implied 

sampling rates based on the sample and population counts for each stratum to determine appropriate weights.  

However, the matched sample is not representative of the population since the {citing year, citing class} 

combinations for which no actual citations (“ones”) exist are ignored from the point of view of the potential citations 

(“zeroes”). To ensure the strata are mutually exclusive and exhaustive while still keeping their number manageable, 

we create (for each cited patent) a new observation by randomly selecting one potentially citing patent for each year 

(in the 10-year window) belonging to one of the technology classes from which no citation occurs (in that year). The 

weight for each of these is computed using the implied sampling rates for random draws from these subpopulations. 

An example should clarify the sample construction. One of our cited patents is 4205881, applied for in 1980 and in 

tech class 299. It receives two citations during 10 years: from 4441761 {year 1982, class 299} and 953915 {1989, 

299}. Therefore patent pairs (4205881, 4441761) and (4205881, 4953915) represent actual citations (“ones”) 

included with a weight of 1 (as we include all citations, i.e., set  = 1). In JTH-based matching, citing patent 

4441761 was matched to control patent 4402550 {year 1982, class 299}. In year 1982 and class 299, there were 92 

potentially matching patents from which patent 4402550 was chosen through a random draw. So the observation 

(4205881, 4402550) was included as a control pair (“zero”) with a weight of 92. Similarly, citing patent 4953915 

mentioned above was matched to control patent 4974907 {1989, 299}. In year 1989 and class 299, there were 59 

potential matches from which 4974907 was chosen. So the observation (4205881, 4974907) was included as a 

control pair (“zero”) with a weight of 59. Finally, for each of the year 1981 through 1990, we selected a random 

potentially citing patent, constrained not to be from technology class 299 for the years 1982 and 1989 (as class 299 

is already included in finer strata above just for these two years). The range of weights for these 10 observations 

ended up being between 61,578 and 99,371, depending on the number of eligible patents in the given citing year. 
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