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New Media… 
• Historically communications research divided between 

•  Mass media 
•  Interpersonal communications 

•  In last few decades, traditional dichotomy has dissolved 
•  Fragmentation of media 

•  Cable, Web, satellite radio 
•  Empowerment of individuals  

•  Email lists, blogs, microblogs, social networking sites, You Tube 

• Now have a near-continuous distribution of production 
•  Emergence of “mass personal communication” 
•  Search and recommendation engines à audience selection 



…Old Questions 
•  In 1940’s Harold Lasswell laid out the essential problem 

of social media: 
•  “Who says what to whom, through which channel, and with what 

effect?” 
•  Equally relevant today 

• Although easy to ask, this question has proven difficult to 
answer 
•  Measuring “who says what to whom” hard at scale 
•  Difficulty compounded by multiplicity of channels 
•  Measuring “effects” of all this (i.e. influence) even harder 

•  Fortunately, Web 2.0 revolution may finally bring the 
answer within reach 



Twitter Well Suited To Lasswell’s Maxim 
•  Full spectrum of production is present 

•  Formal organizations (media, government, brands) 
•  Celebrities (Ashton, Shaq, Oprah) 
•  Public and Semi-Public Figures (bloggers, authors, journalists, 

public intellectuals) 
•  Private Individuals 

• Attention is well defined 
•  The follower graph 

•  Information flow is explicit and observable 
•  Especially when URLs are included 

•  Influence can be quantified 
•  Retweets, click-throughs, conversions 



Measuring Attention on Twitter 
Wu, Hofman, Mason, Watts (2011) 

•  Follower graph (Kwak et al 2010) 
•  Twitter as observed by 7/31/2009 
•  42M users, 1.5B edges 

•  Twitter Firehose 
•  223 day period (7/28/2009 – 3/8/2010) 
•  5B tweets, 260M containing bit.ly URLs 

•  Twitter Lists 
•  Tens of millions of lists 
•  Very time-consuming to crawl them all 
•  Instead introduce two sampling methods 

Twitter List Examples 



Identifying Elite Users 
• Rank users by the frequency of being listed in 
each category 

• Measure the flow of information from top k users 
in each category to the masses 
•  randomly sample 100K ordinary (i.e. unclassified) 

users, calculate: 
•  the average % of accounts they follow among the top k users in 

each category 
•  The average % of tweets they receive from the top k users in 

each category 



Identifying Elite Users 
•  High concentration of 

attention 
•  Celebrities outrank all other 

categories 
•  Let k = 5000  

•  Use only the top 5K users 
in snow-ball sample to 
represent each category 

•  All rest fall into “ordinary” 
category 

•  other values of k gives 
qualitatively 
indistinguishable results) 

•  Accounts for about 50% 
of all tweets received 



Attention Between Elites 



Retweets 



• Research in 1950’s emphasized 
importance of personal influence 

•  Trusted ties more important than media 
influence in determining individual opinions 

• Also found that not all people are equally 
influential 
•  Opinion leaders act as intermediaries between 

mass media and the masses 
•  More influential, and more exposed to the media 
•  But dispersed throughout social strata 

• Called this “the two-step flow” of 
information 

The Two-Step Flow of Information 



Quantify 2-step flow on Twitter 

# of sampled users with n > 0 
-  600K  (60%) 
Fraction of media-originated 
URLs received through 
intermediaries 
 -  avg(n2 / n) = 0.46 
 

intermediary 

Random sample of 1M ordinary 
users 

… 
… 

… 
… 

5K media 
accounts  

Indirectly flow direct 
flow 

1 2 n2 n2 +1 n 
Focus now exclusively 
on Media-originating URLs 



Who Are The Opinion Leaders? 

•  Not surprisingly, 
they intermediate 
more than random 
users 

 
•  Also consume 

more Media URLs 



They also tweet more, have more followers 



Conclusions 
• Attention has fragmented, but remains remarkably 
concentrate on tiny fraction of population 

• Surprising support for the Two-step flow 
•  Intermediaries have more followers, tweet more, and 

consume more media 
•  Just like the original theory claimed 

• Lifespan of content on Twitter reflects the nature of 
the content, not the influence of the source 
•  Twitter really a subset of a larger media ecosystem, from 

which it draws and redraws content 



From Attention to Influence 
• Opinion leaders are interesting in part because they 

appear to generate a “multiplier effect” 
•  Influence one opinion leader and they will influence X others 

•  Two-step flow has become conflated with diffusion 
research to produce notion of “Influencers” 
•  “Law of the Few” (Gladwell, 2000) 
•  “One in ten Americans tells the other nine how to vote, where to 

eat, and what to buy.” (Keller and Berry, 2003) 
•  “Influencers have become the ‘holy grail’ for today’s 

marketers.” (Rand, 2004)  



BUT GRAILS ARE HARD TO FIND… 



Can One Predict Influencers?  

• After the fact, can always tell a story about why X 
succeeded 
•  Can identify some group of individuals who were involved early on 
•  They will seem to have been influential 

• But to make use of influencers, need to identify them in 
advance 

• Very little evidence that marketers (or anyone else) can 
do this consistently 



Influence on Twitter 
Bakshy, Hofman, Mason, Watts (2011) 

• An individual “seed” user tweets a URL (here we 
consider only bit.ly) 

•  For every follower who subsequently posts same URL 
(whether explicit “retweet” or not), seed accrues 1 pt 

• Repeat for followers-of-followers, etc. to obtain total 
influence score for that “cascade” 
•  Where multiple predecessors exist, credit first poster 
•  Can also split credit or credit last poster (no big changes) 

• Average individual influence score over all cascades 
•  Highly conservative measure of influence, as it requires not only 

seeing but acting on a tweet 
•  Click-through would be good, but not available to us 



Cascades on Twitter 

•  1.6M distinct 
“seeds” 

•  Each seed posts 
average of 46.3 
bit.ly URL’s  

•  Hence 74M 
cascades total 

•  Average cascade 
size 1.14 

•  Median cascade 
size 1  

•  Average influence 
score is 0.14 
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Most Tweets Don’t Spread 

~ 99% of adoptions are within 1 hop from the source 
~ 90% of adoptions are direct from the source 



Content and Cascade Size 

URLs in the “Lifestyle” category spread farthest 
Very local and very global topics (Sports & News) 
spread the least 



Interest and Cascade Size 

Unsurprisingly, on average more interesting URLs 
spread farther 



Predicting Influence  
• Objective is to predict influence score for future cascades as 

function of 
•  # Followers, # Friends, # Reciprocated Ties 
•  # Tweets, Time of joining 
•  Past influence score 

•  Fit data using regression tree 
•  Recursively partitions feature space 
•  Piecewise constant function fit to mean of training data in each partition 
•  Nonlinear, non-parametric 

•  Better calibrated than ordinary linear regression 

•  Use five-fold cross-validation 
•  For each fold, estimate model on training data, then evaluate on test data 
•  Every user gets included in one test set 



Results 
• Only two features matter 

•  Past local influence 
•  # Followers 

• Surprisingly, neither # 
tweets nor # following 
matter 

• Also surprisingly, content 
doesn’t help 

• Model is well calibrated 
•  average predicted close to 

average actual within 
partitions 

• But fit is poor (R2 = 0.34) 
•  Reflects individual scatter 



Who are the Influencers? 

Circles represent individual seeds (sized by influence) 



Necessary but not sufficient 
• Seeds of large cascades share certain features (e.g., 

high degree, past influence) 
• However, many small cascades share those features, 

making “success” hard to predict at individual level 
• Common problem for rare events 

•  School shootings, Plane crashes, etc. 
•  Tempting to infer causality from “events,” but causality 

disappears once non-events accounted for 

•  Lesson for marketers:  
•  Individual level predictions are unreliable, even given “perfect” 

information 

•  Fortunately, can target many seeds, thereby harnessing 
average effects 



Should Kim Kardashian Be Paid $10,000 per 
Tweet? 

• On average, some types of influencers are more 
influential than others 
•  Many of them are highly visible celebrities, etc. with millions of 

followers 
•  But these individuals may also be very expensive (i.e. Kim 

Kardashian) 

• Assume the following cost function 
•  ci = ca +fi*cf, where ca = acquisition cost; cf = per-follower cost 
•  Also ca = a*cf, where a expresses cost of acquiring individual users 

relative to sponsoring individual tweets 

• Should you target: 
•  A small # of highly influential seeds? 
•  A large # of ordinary seeds with few followers? 
•  Somewhere in between? 



“Ordinary Influencers” Dominate 

•  Assume cf = $0.01 
•  Equivalent to paying $10K 

per tweet for user with 1M 
followers 

•  When ca = $1,000, (a = 
100,000) highly influential 
users are most cost 
effective 

•  But for lower ratios, most 
efficient choice can be 
individuals who influence 
at most one other 

Influence per Follower 



Conclusions 
• Attention on Twitter is surprisingly concentrated 

•  50% of attention is directed to one of ~ 0.1% of users 

• Nevertheless, influence is hard to predict 
•  Most cascades are tiny 
•  Large cascades are more likely to start with highly visible users 
•  But efficiency is often maximized by targeting “ordinary” 

influencers (who influence just one other on average) 
• By targeting many seeds, can improve 
predictive power dramatically 
•  Consistent with “big seed” model, not “epidemics” 
•  No free lunch, but a cheap snack isn’t bad 
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