INFLUENCE AND ATTENTION ON TWITTER

Duncan Watts Microsoft Research

> Microsoft[®] Research

New Media...

- Historically communications research divided between
 - Mass media
 - Interpersonal communications
- In last few decades, traditional dichotomy has dissolved
 - Fragmentation of media
 - · Cable, Web, satellite radio
 - Empowerment of individuals
 - Email lists, blogs, microblogs, social networking sites, You Tube
- Now have a near-continuous distribution of production
 - Emergence of "mass personal communication"
 - Search and recommendation engines \rightarrow audience selection

...Old Questions

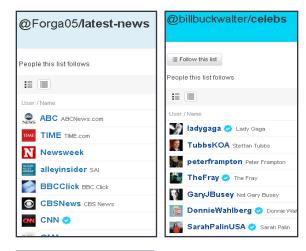
- In 1940's Harold Lasswell laid out the essential problem of social media:
 - "Who says what to whom, through which channel, and with what effect?"
 - Equally relevant today
- Although easy to ask, this question has proven difficult to answer
 - Measuring "who says what to whom" hard at scale
 - Difficulty compounded by multiplicity of channels
 - Measuring "effects" of all this (i.e. influence) even harder
- Fortunately, Web 2.0 revolution may finally bring the answer within reach

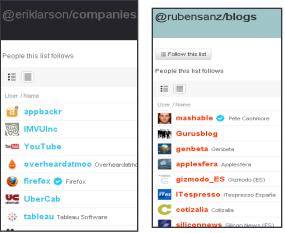
Twitter Well Suited To Lasswell's Maxim

- Full spectrum of production is present
 - Formal organizations (media, government, brands)
 - Celebrities (Ashton, Shaq, Oprah)
 - Public and Semi-Public Figures (bloggers, authors, journalists, public intellectuals)
 - Private Individuals
- Attention is well defined
 - The follower graph
- Information flow is explicit and observable
 - Especially when URLs are included
- Influence can be quantified
 - Retweets, click-throughs, conversions

Measuring Attention on Twitter Wu, Hofman, Mason, Watts (2011)

- Follower graph (Kwak et al 2010)
 - Twitter as observed by 7/31/2009
 - 42M users, 1.5B edges
- Twitter Firehose
 - 223 day period (7/28/2009 3/8/2010)
 - 5B tweets, 260M containing bit.ly URLs
- Twitter Lists
 - Tens of millions of lists
 - Very time-consuming to crawl them all
 - Instead introduce two sampling methods





Twitter List Examples

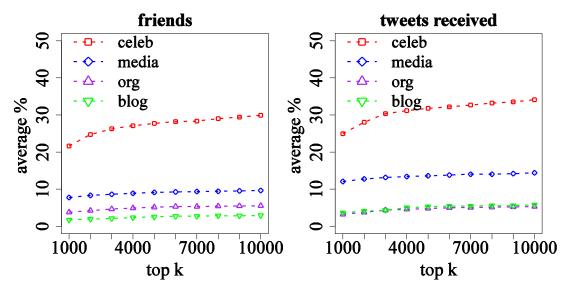
Identifying Elite Users

• Rank users by the frequency of being listed in each category Table 3: Top 5 users in each category

Celebrity	Media	Org	Blog
aplusk	cnnbrk	google	mashable
ladygaga	nytimes	Starbucks	problogger
TheEllenShow	asahi	twitter	kibeloco
taylorswift13	BreakingNews	joinred	naosalvo
Oprah	TIME	ollehkt	dooce

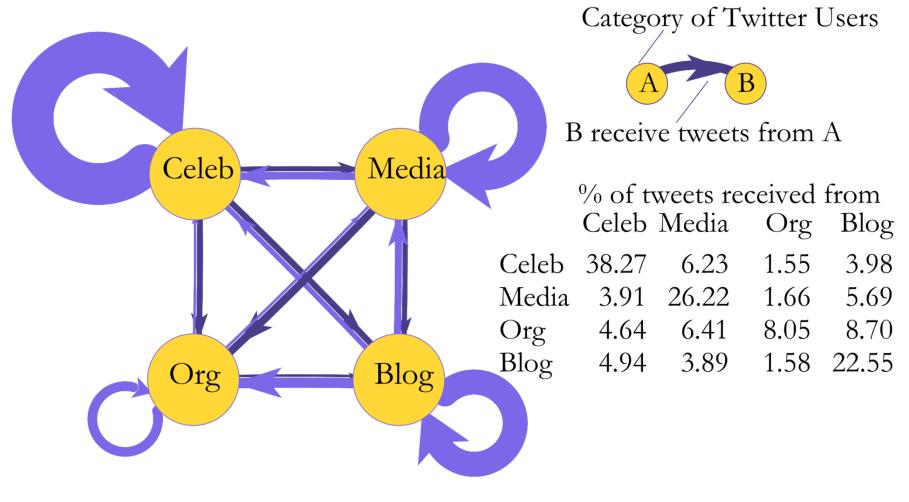
- Measure the flow of information from top k users in each category to the masses
 - randomly sample 100K ordinary (i.e. unclassified) users, calculate:
 - the average % of accounts they follow among the top k users in each category
 - The average % of tweets they receive from the top k users in each category

Identifying Elite Users

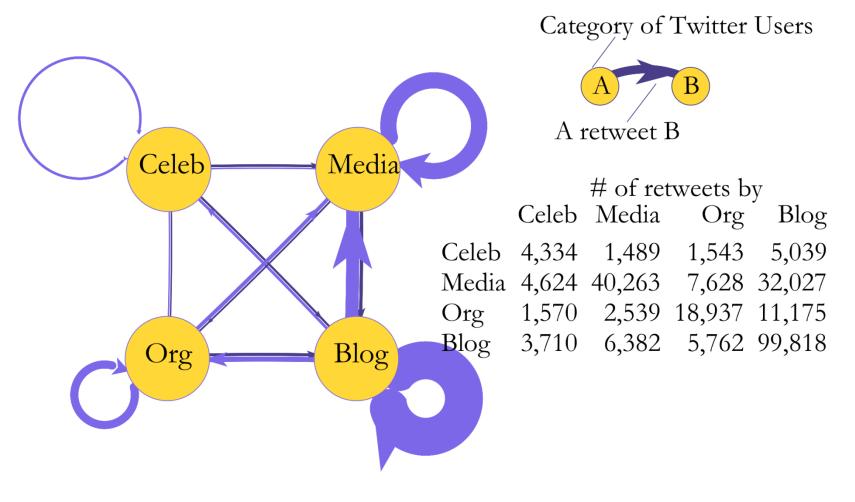


- High concentration of attention
 - Celebrities outrank all other categories
- Let k = 5000
 - Use only the top 5K users in snow-ball sample to represent each category
 - All rest fall into "ordinary" category
 - other values of k gives qualitatively indistinguishable results)
- Accounts for about 50% of all tweets received

Attention Between Elites

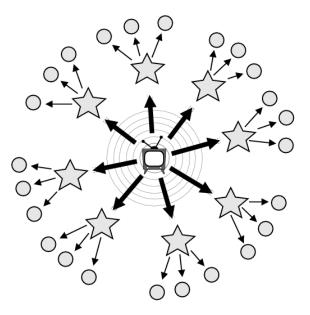


Retweets

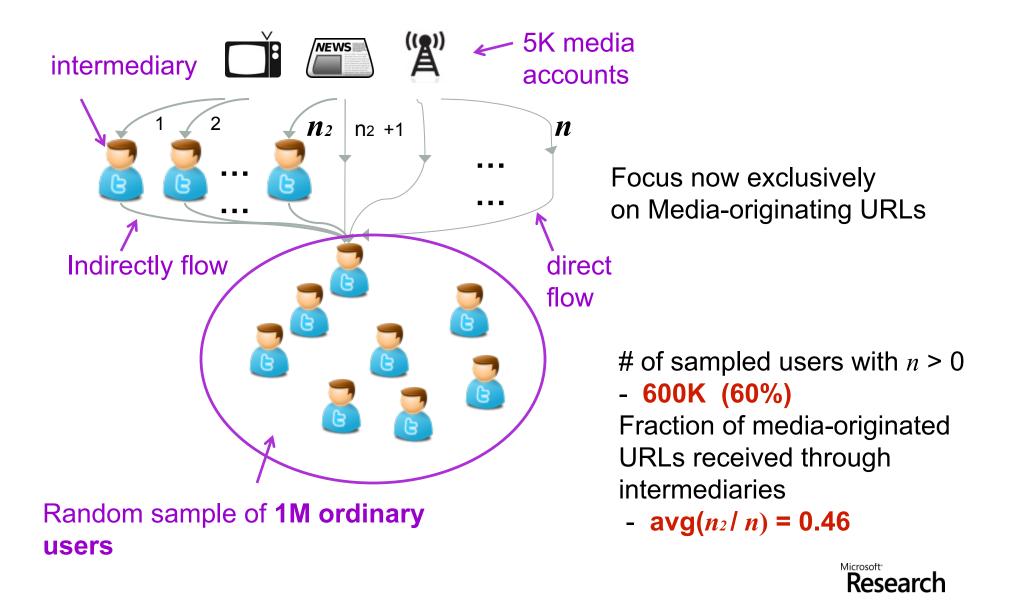


The Two-Step Flow of Information

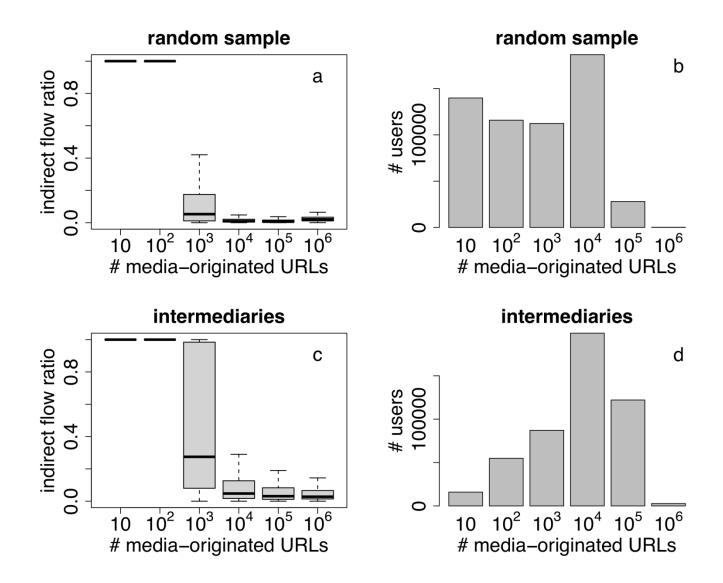
- Research in 1950's emphasized importance of *personal* influence
 - Trusted ties more important than media influence in determining individual opinions
- Also found that not all people are equally influential
 - Opinion leaders act as intermediaries between mass media and the masses
 - More influential, and more exposed to the media
 - But dispersed throughout social strata
- Called this "the two-step flow" of information



Quantify 2-step flow on Twitter

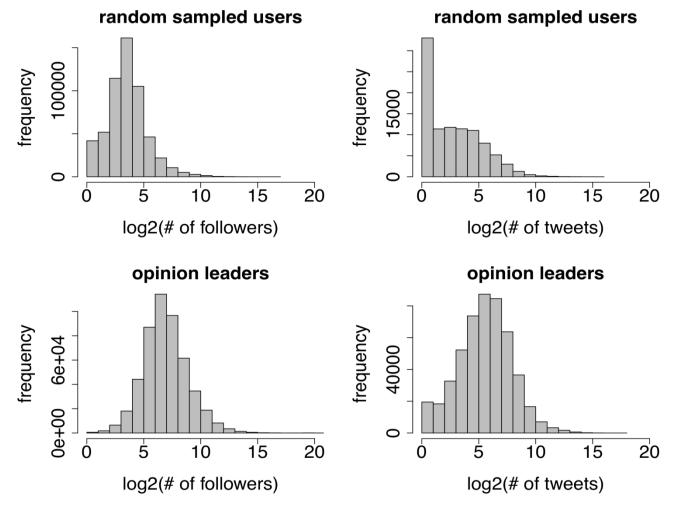


Who Are The Opinion Leaders?



- Not surprisingly, they intermediate more than random users
- Also consume more Media URLs

They also tweet more, have more followers



Research

Conclusions

- Attention has fragmented, but remains remarkably concentrate on tiny fraction of population
- Surprising support for the Two-step flow
 - Intermediaries have more followers, tweet more, and consume more media
 - Just like the original theory claimed
- Lifespan of content on Twitter reflects the nature of the content, not the influence of the source
 - Twitter really a subset of a larger media ecosystem, from which it draws and redraws content

From Attention to Influence

- Opinion leaders are interesting in part because they appear to generate a "multiplier effect"
 - Influence one opinion leader and they will influence X others
- Two-step flow has become conflated with diffusion research to produce notion of "Influencers"
 - "Law of the Few" (Gladwell, 2000)
 - "One in ten Americans tells the other nine how to vote, where to eat, and what to buy." (Keller and Berry, 2003)
 - "Influencers have become the 'holy grail' for today's marketers." (Rand, 2004)

BUT GRAILS ARE HARD TO FIND...

Can One Predict Influencers?

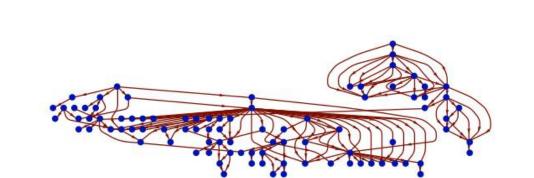
- After the fact, can always tell a story about why X succeeded
 - Can identify some group of individuals who were involved early on
 - They will seem to have been influential
- But to <u>make use of influencers</u>, need to identify them in advance
- Very little evidence that marketers (or anyone else) can do this consistently

Influence on Twitter

Bakshy, Hofman, Mason, Watts (2011)

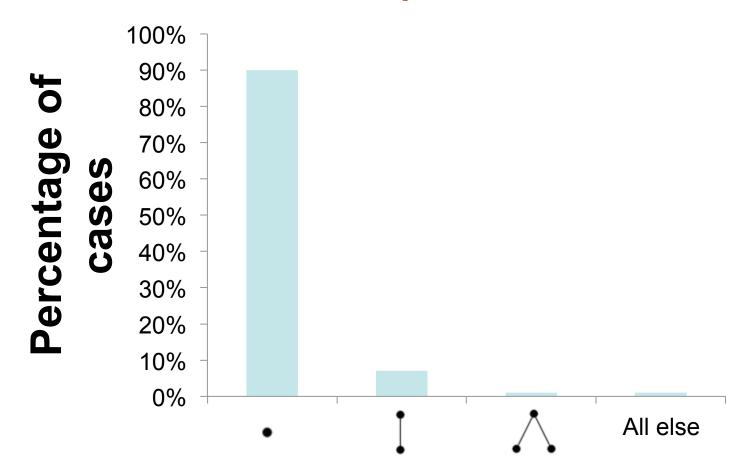
- An individual "seed" user tweets a URL (here we consider only bit.ly)
- For every follower who subsequently posts same URL (whether explicit "retweet" or not), seed accrues 1 pt
- Repeat for followers-of-followers, etc. to obtain total influence score for that "cascade"
 - Where multiple predecessors exist, credit first poster
 - Can also split credit or credit last poster (no big changes)
- Average individual influence score over all cascades
 - Highly conservative measure of influence, as it requires not only seeing but acting on a tweet
 - Click-through would be good, but not available to us

Cascades on Twitter



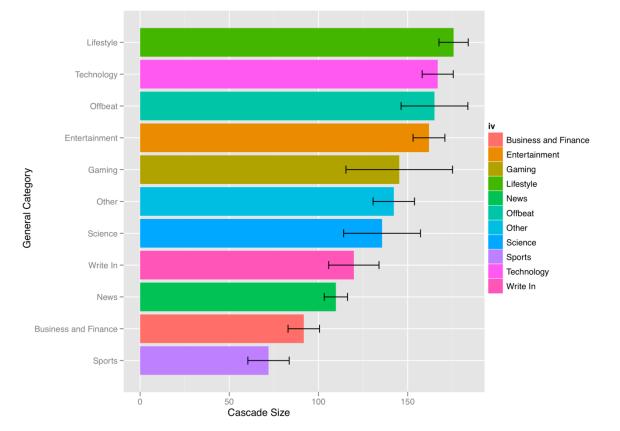
- 1.6M distinct "seeds"
- Each seed posts average of 46.3 bit.ly URL's
- Hence 74M cascades total
- Average cascade size 1.14
 - Median cascade size 1
- Average influence score is 0.14

Most Tweets Don't Spread



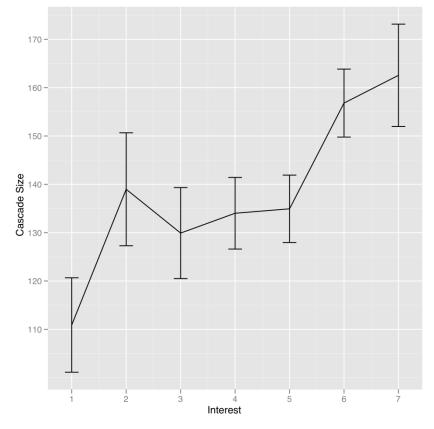
~ 90% of <u>adoptions</u> are direct from the source ~ 99% of <u>adoptions</u> are within 1 hop from the source Research

Content and Cascade Size



URLs in the "Lifestyle" category spread farthest Very local and very global topics (Sports & News) spread the least

Interest and Cascade Size



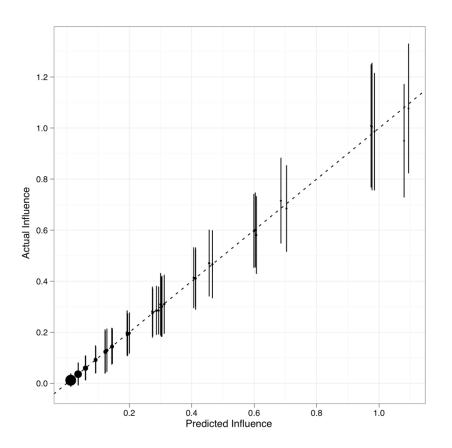
Unsurprisingly, on average more interesting URLs spread farther

Predicting Influence

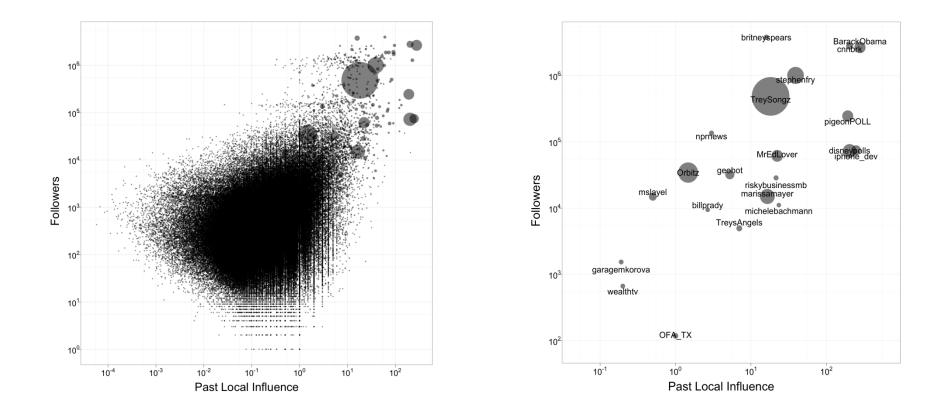
- Objective is to predict influence score for future cascades as function of
 - # Followers, # Friends, # Reciprocated Ties
 - # Tweets, Time of joining
 - Past influence score
- Fit data using regression tree
 - Recursively partitions feature space
 - Piecewise constant function fit to mean of training data in each partition
 - Nonlinear, non-parametric
 - Better calibrated than ordinary linear regression
 - Use five-fold cross-validation
 - · For each fold, estimate model on training data, then evaluate on test data
 - Every user gets included in one test set

Results

- Only two features matter
 - Past local influence
 - # Followers
- Surprisingly, neither # tweets nor # following matter
- Also surprisingly, content doesn't help
- Model is well calibrated
 - average predicted close to average actual within partitions
- But fit is poor (R² = 0.34)
 - Reflects individual scatter



Who are the Influencers?



Circles represent individual seeds (sized by influence) Research

Necessary but not sufficient

- Seeds of large cascades share certain features (e.g., high degree, past influence)
- However, many small cascades share those features, making "success" hard to predict at individual level
- Common problem for rare events
 - School shootings, Plane crashes, etc.
 - Tempting to infer causality from "events," but causality disappears once non-events accounted for
- Lesson for marketers:
 - Individual level predictions are unreliable, even given "perfect" information
- Fortunately, can target many seeds, thereby harnessing average effects

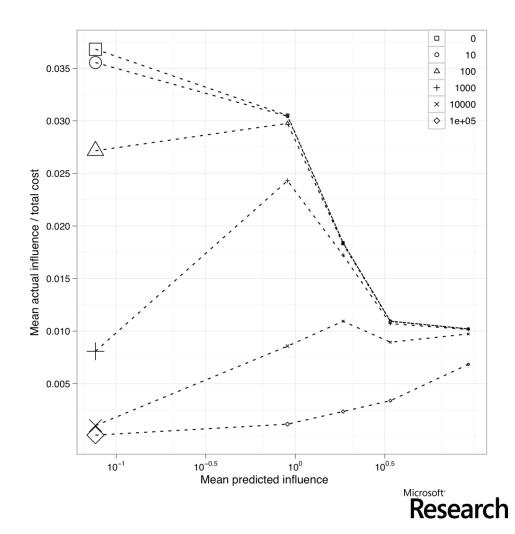
Should Kim Kardashian Be Paid \$10,000 per Tweet?

- On average, some types of influencers are more influential than others
 - Many of them are highly visible celebrities, etc. with millions of followers
 - But these individuals may also be very expensive (i.e. Kim Kardashian)
- Assume the following cost function
 - $c_i = c_a + f_i * c_f$, where $c_a = acquisition cost$; $c_f = per-follower cost$
 - Also c_a = a*c_f, where a expresses cost of acquiring individual users relative to sponsoring individual tweets
- Should you target:
 - A small # of highly influential seeds?
 - A large # of ordinary seeds with few followers?
 - Somewhere in between?

"Ordinary Influencers" Dominate

- Assume c_f = \$0.01
 - Equivalent to paying \$10K per tweet for user with 1M followers
- When c_a = \$1,000, (a = 100,000) highly influential users are most cost effective
- But for lower ratios, most efficient choice can be individuals who influence at most one other

Influence per Follower



Conclusions

- Attention on Twitter is surprisingly concentrated
 - 50% of attention is directed to one of ~ 0.1% of users
- Nevertheless, influence is hard to predict
 - Most cascades are tiny
 - Large cascades are more likely to start with highly visible users
 - But efficiency is often maximized by targeting "ordinary" influencers (who influence just one other on average)
- By targeting many seeds, can improve predictive power dramatically
 - Consistent with "big seed" model, not "epidemics"
 - No free lunch, but a cheap snack isn't bad

References

Shaomei Wu, Jake Hofman, Winter A. Mason, and Duncan J. Watts. "Who says what to whom on Twitter" *Proceedings of the 20th international conference on World Wide Web*, Hyderabad, India (2011)

Eytan Bakshy, Jake Hofman, Winter Mason, and Duncan J. Watts. "Everyone's an influencer: Quantifying Influence on Twitter" *Proceedings of the 4th International Conference on Web Search and Data Mining*, Hong Kong (2011)

Background:

- D. J. Watts and P. S. Dodds. "Networks, influence, and public opinion formation." *Journal of Consumer Research*, 34(4), 441-458 (2007).
- D. J. Watts. Challenging the "Influentials Hypothesis." *Measuring Word of Mouth, Vol. 3. Word of Mouth Marketing Association* (2007).
- D. J. Watts. "The Accidental Influentials." *Harvard Business Review*, p. 22-23 (February, 2007)
- D. J. Watts and J. Peretti. Viral marketing in the real world. *Harvard Business Review* (May, 2007)

