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Abstract. This paper analyzes the formation of networks in which each agent

is assumed to possess some information of value to the other agents in the

network. Agents derive payoff from having access to the information of oth-

ers through communication or spillovers via the links between them. Linking

decisions are based on network-dependent marginal payoff and a network inde-

pendent noise capturing exogenous idiosyncratic effects. Moreover, agents have

a limited observation radius when deciding to whom to form a link. I find that

for small noise the observation radius does not matter and strongly centralized

networks emerge. However, for large noise, a smaller observation radius gener-

ates networks with a larger degree variance. These networks can also be shown

to have larger aggregate payoff. I then estimate the model using a network of

coinventors, firm alliances and trade relationships between countries, and find

that the model can closely reproduce the observed patterns. The estimates show

that with increasing levels of aggregation, the observation radius is increasing,

indicating economies of scale in which larger organizations are able to process

greater amounts of information.
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1. INTRODUCTION

Networks are important in explaining a large variety of social and economic phenomena.

This insight has lead to an increasing interest in the study of networks in economics and

related sciences accompanied by a growing number of publications in the field.1 Networks

play a particularly important role in understanding the process of communication of infor-

mation and knowledge diffusion among diverse actors, ranging from individuals to firms and

countries. In this paper I introduce a simplistic and tractable model to study the emergence

of networks of information and knowledge diffusion, which is able to match and explain the

observed empirical patterns at different levels of aggregation.

On an individual level, a large body of literature has emphasized the detrimental effect

of social networks of inventors on the productivity of innovative regions (see e.g. Allen,

1983, Almeida & Kogut, 1999, Marshall, 1919, Singh, 2005). A prominent example is the

success story of Silicon Valley, which has been attributed to its informal networks of friend-

ship and collaboration (Fleming et al., 2007, Saxenian, 1994). On the organizational level,

R&D partnerships between firms have become a widespread phenomenon characterizing tech-

nology diffusion and dynamics (Fischer, 2006, Gulati, 2007, Hagedoorn, 2002, Nooteboom,

2004), especially in industries with rapid technological development such as the biotech

and computer industries (see Ahuja, 2000, Powell et al., 2005, Riccaboni & Pammolli, 2002,

Roijakkers & Hagedoorn, 2006). In R&D partnerships firms exchange information about new

products or technologies and diffuse knowledge throughout the economy. On the aggregate

level of countries, the spread and diffusion of technologies is a key factor for explaining

economic growth (Bitzer & Geishecker, 2006, Grossman & Helpman, 1995). The basic idea

is that economic growth in relatively backward economies takes the form of adoption and

imitation of existing technologies (Kuznets, 1969). Imitation and innovation are affected

by technology diffusion, trade and interdependencies, and these factors are crucial for the

growth process.2

In this paper I identify a number of common empirical regularities shared by the net-

1This literature has steadily grown in the last decade. The monographs of Jackson (2008), Goyal (2007),
and Vega-Redondo (2007) are excellent surveys contrasting this literature with the economic theory of
networks. See also Newman (2010) for a survey of the literature in physics, and Durrett (2007) for a concise
review of the literature on networks in mathematics.

2See e.g. Coe & Helpman (1995), Acemoglu (2009) and Aghion & Howitt (2009).
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works of inventors, firms and countries, some of which (but not all) have been documented

already in the literature. First, the distributions of degree (the number of links of a node)

in these networks exhibit fat tails, typically decaying as a power-law.3 Similarly, the average

clustering coefficient (Watts & Strogatz, 1998), i.e., the fraction of connected neighbors of a

node, tends to decrease with the degree and also exhibits a power-law decay.4 Moreover, the

distribution of (small) connected components (in which there exists a path between every

pair of nodes) follows a power-law decay. However, the average degree of the neighbors of

a node varies among these networks. While the network of inventors exhibits an increas-

ing average neighbors’ degree with the degree of a node, this correlation is almost absent

in the network of firms, and it is decreasing in the network of trade relationships between

countries (cf. Serrano & Boguñá, 2003). The first is referred to as “assortativity” while the

latter refers to “dissortativity” (Newman, 2002). In this paper I introduce a simple model

that can reproduce all these empirical distributions and further gives an explanation for the

variations observed in the average neighbors’ connectivity.

I consider a general class of models (payoff functions) in which each agent is assumed

to possess some information of value to the other agents in the network. Agents derive

payoff from having access to the information of others through direct communication or

spillovers along the links in the network. Agents’ incentives to form links can be partitioned

into a network dependent part as well as a network independent exogenous random term,

referred to as noise. The network dependent part of agents’ payoffs derives from having

access to the information of others. The noise term captures exogenous random perturbances,

shortcomings in assessing the correct value of information possessed by other agents and

exogenous matching effects.

Moreover, it is assumed that the information transmitted through the links in the net-

work is exposed to decay, making information that travels longer distances less valuable (cf.

Bala & Goyal, 2000, Jackson & Wolinsky, 1996). In this paper, I focus on the case of strong

decay, or weak knowledge spillover effects, where the value for an agent of being connected in

3A power-law degree distribution in patent citation networks has been documented in e.g. Brantle & Fallah
(2007), Valverde et al. (2007), in the network of R&D collaborating firms in Gay & Dousset (2005),
Powell et al. (2005) and the network of trade in Fagiolo et al. (2009), Serrano & Boguñá (2003).

4Goyal et al. (2006) make a similar observation in the network of scientific coauthorships among
economists, and Serrano & Boguñá (2003) in the network of trade.
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a network is determined by his immediate neighbors (cf. Galeotti et al., 2010). In turn, this

implies the the marginal return from connecting to an agent is determined by his degree.

Agents sequentially enter the network and obtain an opportunity to acquire information

from the incumbent agents through forming links. Upon entry, each agent can sample a given

number of existing agents in the network and observes these agents and their neighbors (cf.

Friedkin, 1983).5 I call the number of sampled agents the “observation radius”. He then

forms links to the observed agents in the sample based on the marginal payoff obtained

for each link. With this sampling procedure I follow a common approach in the statistics

and sociology literature for how individuals collect information on an existing population

which is difficult to observe called “snowball/star sampling” (Frank, 1977, Goodman, 1961,

Kolaczyk, 2009).6

I analyze the emerging networks for different observation radii and levels of noise. I find

that for small noise the observation radius does not matter and strongly centralized networks

emerge. However, for large noise, a smaller observation radius generates networks with a

larger degree variance. One can show that the aggregate payoff maximizing networks in the

class of models considered here increases with the degree variance.7 Hence, I find that when

the exogenous noise is large then a smaller observation radius leads to networks that have

larger aggregate payoff. This provides an example in the context of a network-based meeting

process where “knowing less can be better”.

I then estimate the model using three different empirical networks that can be regarded as

a proxy for the underlying network of information transmission and knowledge diffusion at

different levels of aggregation: a network of coinventors from patents in the drug development

sector, firm alliances in the biotech sector and a network of trade relationships between

countries. Notably, I find that the model can closely match all the observed distributions

for the degree, clustering-degree, nearest neighbor average degree and the component size

distribution. Furthermore, estimating the model’s parameters for these networks shows that

5In a similar way Alós-Ferrer & Weidenholzer (2008), Galeotti et al. (2010), Jackson & Rogers (2007),
McBride (2006) assume that agents have only limited information of the network.

6See Von Hippel et al. (1999) for a case study where a firm uses snowball sampling to collect information
from costumers and their contacts.

7Similarly, Westbrock (2010) shows that in the model by Goyal & Moraga-Gonzalez (2001), where firms
are competing on the product market while they can form R&D collaborations to reduce their production
costs, welfare positively correlates with the degree variance.
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with increasing levels of aggregation the observation radius is increasing. This indicates the

presence of economies of scale: larger organizations are able to process greater amounts of

information, as compared to the limited capacities individuals typically face for observation,

communication and information processing (cf. Radner, 1992, Radner & Van Zandt, 1992,

Wilson, 1975).

The paper in the economics literature most closely related to the one presented here

is Jackson & Rogers (2007).8 The authors introduce a model of a growing network which

combines random search protocols for potential linking partners, with local network-based

search protocols. By means of theoretical and empirical analysis, they are able to show that

their model is very flexible in fitting real-world data. Their model and method of analysis

shares many features of a vast literature originating from statistical physics. As common in

this literature, their process of network formation is rather mechanical, and a serious defi-

ciency of this literature is the lack of a sound micro-foundation. One contribution of this

work is that it starts directly from a discrete-choice approach, with an explicit modeling

of the reasons why links are formed. Further, albeit similar, the difference in the linking

processes of their model and the present one allows me to measure empirically the informa-

tion processing capabilities of agents. Moreover, the results for the degree distribution and

efficiency in Jackson & Rogers (2007) are based on a mean-field approximation while such

an approxkimation is not needed to obtain the corresponding results in the present paper.

Further, Jackson & Rogers (2007) do not derive explicitly all the statistics that I do here

(such as the average nearest neighbor connectivity, the clustering degree distribution or the

component size distribution), and do not analyze the impact of different observation radii on

these statistics, in particular, the transition from assortative to dissortative networks. Also,

when the marginal payoff of agents is increasing in the degree, and there is no exogenous

noise, then differently to the efficiency results obtained in Jackson & Rogers (2007), I show

that the observation radius has no impact on aggregate payoffs and efficiency. This indicates

that their efficiency analysis is not robust under a degree dependent payoff function and the

8Besides the economics literature there also exists a large literature in computer science, physics and math-
ematics, where similar models are studied. I refer to Krapivsky & Redner (2001), Krapivsky et al. (2000),
Oliveira & Spencer (2005), Vazquez (2003), Kumar et al. (2000), Wang et al. (2009) and Toivonen et al.
(2006), to mention only a view. However, these authors typically do not make explicit behavioral assump-
tions about why links are formed, do not analyze welfare implications, and do not estimate their models for
empirically observed networks.
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presence of noise.

Based on the model by Jackson & Rogers (2007) a number of extensions and applications

have been suggested. Ghiglino (2011) introduces an algorithm similar to Jackson & Rogers

(2007) to study the creation and recombination of ideas from a pool of existing knowledge

(more precisely, networks of citations between scientific publications). Bramoullé & Rogers

(2009) introduce different types of agents and study the mechanisms underlying homophily,

that is, the tendency of similar types of agents being connected. Moreover, Kovarik & van der Leij

(2009) introduce risk aversion in the decisions of agents to form links locally or globally. They

show that risk aversion can lead to increased clustering in the network. In contrast, in Chaney

(2011) a spatial extension is suggested in which the network is embedded into geographi-

cal space and agents who are closer in space are more likely to form links. Differently to

these authors, I introduce a behavioral foundation of why links are formed in the model

by Jackson & Rogers (2007) in the context of knowledge diffusion in networks. Moreover,

none of these works investigates the empirical networks that I do in the present paper and

estimates the model for these data.

The paper is organized as follows. In Section 2 I introduce the general modeling frame-

work. Section 2.1 defines the payoff agents derive from the network. Next, in Section 2.2

I describe the evolution of the network. In Section 3 I analyze the networks generated by

the model, while Section 4 provides an efficiency analysis and shows how the level of noise

and the observation radius affect aggregate payoffs. Section 6 discusses several extensions of

the model. Section 7 contains an empirical application of the model to different real world

networks. Section 8 concludes. Various examples in the literature that fall into the general

class of games considered here are discussed in Appendix A. All proofs are relegated to Ap-

pendix B. A detailed explanation of the empirical method and results are given in Appendix

C. Finally, Appendices D and E provide a more detailed discussion of the model extensions

introduced in Section 6.

2. THE MODEL

The network is modeled as a directed graph, which is a pair G ≡ 〈N , E〉, where N ≡

{1, . . . , n} is a set of nodes (vertices) and E ⊂ N ×N is a set of edges (links). The set of all

networks with n nodes is denoted by G(n). Similarly, the set of networks with n nodes and
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e edges (or links) is denoted by G(n, e). We identify every graph G with a network, and thus

use these two terms interchangeably. We denote the out-neighborhood of a vertex i as the

set of agents he can directly access, i.e. N+
G (i) ≡ {j ∈ N|ij ∈ E}. The in-neighborhood of i

is conversely the set of agents which can access i directly, i.e. N−
G (i) ≡ {j ∈ N|ji ∈ E}. The

in-degree of i is the cardinality of i’s in-neighborhood set and denoted as d−G(i) ≡ |N−
G (i)|.

The out-degree of i is d+G(i) ≡ |N−
G (i)|. The (total) degree of i is dG(i) ≡ d+G(i)+d−G(i) and the

total neighborhood is NG(i) ≡ N+
G (i)∪N−

G (i). The average degree of G is d̄G ≡ 1
n

∑

i∈N dG(i)

and the degree variance is given by σ2
d(G) ≡ 1

n

∑

i∈N (dG(i)− d̄G)
2. Following Bala & Goyal

(2000) I define the closure of a graph G, denoted by Ḡ, by the condition ij ∈ E(Ḡ) ⇔ ij ∈

E(G)∨ji ∈ E(G). The number of edges e(G) in G satisfies e(G) =
∑

i∈N d+G(i) =
∑

i∈N d−G(i)

while the number of edges e(Ḡ) in the closure Ḡ is given by e(Ḡ) = 1
2

∑

i∈N dG(i). We denote

by G⊕ ij the network obtained by adding the link ij to E . Similarly, G⊖ ij is the network

obtained from G by removing the link ij from E .

With these definitions at hand, we are now able to introduce the payoff agents derive from

being connected in a network and their incentives to form links in the following section.

2.1. Payoffs

For a given network G = 〈N , E〉 ∈ G(n) we assign each each agent i ∈ N a payoff

πi(·, δ) : G(n) → R which depends on the network G and a (decay) parameter δ ≥ 0 which

measures the degree of interdependency between agents’ payoffs in G. We define the link

incentive function fi : G(n)×N → R for an agent i ∈ N as

(2.1) fi(G, j) ≡ πi(G⊕ ij, δ)− πi(G, δ),

which measures the marginal payoff to the agent i resulting from the potential link ij /∈ E .

Here we focus on link incentive functions (and therefore on classes of games) which satisfy

the following conditions:

Assumption 1 For all i ∈ N the link incentive function fi(G, ·) : N → R has the following

properties:

(LM) Link monotonicity: fi(G, j) ≥ 0 for all j 6= i ∈ N .
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(LD) Linear differences: For all ij, ik /∈ E , there exists a constant γ ≥ 0 and a linear in-

creasing function g : R → R such that

fi(G, j)− fi(G, k)

δγ
= g (dG(j)− dG(k)) + o(1),

holds in the limit of δ → 0.

Let us briefly discuss the implications of these two conditions in turn. Link monotonicity

(LM) requires that the incentives to link are non-negative. Intuitively it says that no link

to be formed can harm an agent (cf. Dutta et al., 2005). Condition (LD), linear differences,

allows us to order the linking incentives for the entering agent across all potential linking

partners. It says that the agent i has the highest incentive to direct a link to the agent who

has the current highest degree among all alternative linking partners. Two potential links

are judged as being equally attractive for the agent if the involved agents have the same

degree in the current network.

For our efficiency analysis, we further make the following assumption:

Assumption 2 Let Π : G(n) × R+ → R denote aggregate payoff defined by Π(G, δ) =
∑

i∈N πi(G, δ) and let σ2
d(G) be the degree variance of G ∈ G(n, e). Then we assume that the

following condition holds:

(DC) Degree concentration: For n ∈ N and 0 ≤ e ≤
(
n
2

)

arg max
G∈G(n,e)

Π(G, δ) = argmax
G∈G(n,e)

σ2
d(G)

holds in the limit of δ → 0.

Assumption (DC) implies that networks with a higher degree inequality, as measured by

the degree variance, generate higher welfare.

Appendix A provides a number of examples from the economic literature which satisfy

Assumptions 1 and 2. These examples illustrate how the assumptions made in this section

arise naturally when knowledge diffuses in networks and the transmission of information

along the links is exposed to strong decay or when there are weak knowledge spillover effects

between neighboring agents (corresponding to small values of δ).
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2.2. The Network Formation Process

In this section the formation of the network is introduced. We consider a discrete time,

non-stationary Markov chain (Gt = 〈Nt, Et〉)t∈{1,2,...,T} for some T ∈ N ∪ {∞}, defining a

nested sequence of graphs G1 ⊂ G2 ⊂ . . . GT ∈ G(T ) in which each network Gt is obtained

from the predecessor Gt−1 by the addition of an agent and a specified number m ≥ 1 of links

emanating from that agent. Each network Gt is a random variable adapted to the filtration

Ft = σ({Gs : 1 ≤ s ≤ t}). The probability measure P(·|Ft−1) : Ft → [0, 1] is denoted as Pt.

Expected values with respect to Pt are similarly denoted by Et[·|Ft−1]. Agents are labeled

by their date of birth, so that t is the label of the agent entering the network at time t of

the process.

We will need to agree on a given initial condition so that the network formation dynamics

is well-defined. I choose as the initial network the graph G1 ≡ Km+1, i.e. the complete

graph on m+ 1 agents in which all agents are bilaterally connected by m directed links (cf.

Jackson & Rogers, 2007).

Process time t ∈ [T ] ≡ {1, 2, . . . , T} divides the population of agents into a countable set

in N of active and passive agents. These two sets are denoted, respectively, by At and Pt.

Passive agents have already entered the network and do not make any decisions if subsequent

stages of the network formation process. At any date t the agent with label t, and only this

agent, becomes active and considers forming a set of links. Once his decision has been made

he joins the pool of passive agents. The initial composition of the population in active and

passive agents is given by Pm+1 = {1, 2, . . . ,m+1}, and Am+1 = [T ] \Pm+1. Each graph Gt

has exactly |Nt| = t (passive) vertices and |Et| = e(Gt) = mt edges. It is formed from Gt−1

be adding one agent with the label t > m + 1 and m edges from t to some passive agents

i ∈ Pt−1. Hence, every passive agent has constant out-degree equal tom, and thus we identify

the in-degree simply by the degree of a passive agent via the identity dGt
(i) = d−Gt

(i)+m for

all agents i ∈ Pt.

Before creating links, an entering agent t must make an observation of the prevailing

network Gt−1 and identify a set of agents to whom he can form links. We call this set the

(observed) sample St ⊆ Pt−1. The sample St is obtained by selecting ns ≥ 1 passive agents

in Pt−1 uniformly at random (without replacement) and forming the union of these agents
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and their out-neighbors. We call ns the observation radius. Note that an agent j ∈ Pt−1

can enter the sample St either by being directly observed by the entrant t or by being

observed indirectly as the neighbor of a directly observed agent i ∈ Pt−1. This network

sampling procedure is also known as unlabeled star sampling (Frank, 1977, Kolaczyk, 2009).

An illustration is shown in Figure 1.9

If the observed sample St constitutes only a small fraction of the passive agents Pt−1 in

the network Gt−1, we speak of link formation with local information. Local information is

also a key ingredient to the model of Jackson & Rogers (2007),10 and has been documented

in various empirical studies (see e.g. Friedkin, 1983).

Given the observed sample St, the entrant t must make a decision to whom he wants to

create a link in St. We assume that this decision is made in a myopic way.11 We assume that

an entrant t chooses to link to the an incumbent agent j ∈ St that maximizes the value of

his link incentive function plus a random element (cf. Snijders, 2001, Snijders et al., 2010)

(2.2) ft(Gt−1, j) + εij.

The term εij is an exogenous random variable, indicating the part of the agent’s preference

that is not represented by the systematic component fi(G, j). This includes, for example,

exogenous matching effects between characteristics of agents i and j that do not depend

on the network structure G. We assume that the random variables εij are independent and

identically distributed for all i, j. When these exogenous matching effects are weak and

δ → 0, Equation (2.2) and Assumption (LD) introduce a preferential attachment mechanism

to agents with a larger number of connections. In this case, agents who have a larger number

of social ties are viewed as better sources for knowledge spillovers than agents with only a

few neighbors (Galeotti et al., 2010).

More formally, we can give the following definition of the network formation process:

9Further note that we assume that link formation follows a sampling procedure without replacement.
Would we allow for sampling with replacement, multiple links could be created to the same agent.

10See also McBride (2006) and Galeotti et al. (2010) for further examples.
11With this we mean that an agent t only considers the network Gt−1 as source of information for his

decision. He does not estimate the possible impact his linking decision at time t (which is an irreversible
act) has on the future evolution of his personal utility level. For an alternative approach see e.g. Dutta et al.
(2005).
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St = {i, j, k}

t

i k

lj

St = {i, j, k, l}

t

i k

lj

Figure 1.— (Left panel) In the first draw, the entering agent t observes agent i and its
out-neighbors j, k. The observed sample is St = {i, j, k}. (Right panel) In the second draw,
agent t observes also agent j and the out-neighborhood {k, l} of j. The observed sample is
then St = {i, j, k, l}.

Definition 1 For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ],

[T ] ≡ {1, 2, . . . , T}, as follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all

t > m+ 1 the graph Gt is obtained from Gt−1 by applying the following steps:

Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt =

Pt−1 ∪ {t} and At = At−1 \ {t}, respectively.

Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed by

selecting ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement and adding

i as well as the out-neighbors N+
Gt−1

(i) of i to St.

Link creation: Given the sample St, agent t creates m ≥ 1 links to agents in St without

replacement. For each link, agent t chooses the j ∈ St that maximizes ft(Gt−1, j) + εtj.

Let Rt ⊆ St, |Rt| = m, be the set of agents that receive a link from the entrant at time t.

The network at time t is then given by Gt = 〈Pt−1 ∪{t}, Et−1 ∪{tj : j ∈ Rt}〉. We define the
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attachment kernel as the probability that an agent j ∈ Pt−1 receives a link from the entrant

Kβ
t (j|Gt−1) ≡ Et[1Rt

(j)|Gt−1] =
∑

St⊆Pt−1

∑

Rt⊆St

1Rt
(j)Pt(St,Rt|Gt−1)

=
∑

St⊆Pt−1

∑

Rt⊆St

1Rt
(j)Pt(Rt|St, Gt−1)

︸ ︷︷ ︸

≡Kβ
t (j|St,Gt−1)

Pt(St|Gt−1),

where Kβ
t (j|St, Gt−1) is the probability, conditional on the sample St and the prevailing

network Gt−1, that an agent j receives a link after the m draws (without replacement) by

the entrant. Since the entrant forms links to the agents that maximize his link incentive

function plus a random element, we need to consider the cases where agent j has the highest

value among all agents in the sample, or the second highest, and so on. The corresponding

probability can be written as follows12

(2.3)

Kβ
t (j|St, Gt−1) =

m∑

l=1

∑

i1,i2,...,il−1

l−1∏

r=1

Pt

(

ft(Gt−1, ir) + εt,ir = max
k∈St\{i1,...,ir}

ft(Gt−1, k) + εt,k

)

× Pt

(

ft(Gt−1, j) + εt,j = max
k∈St\{i1,...,il−1}

ft(Gt−1, k) + εt,k

)

1St
(j),

with indices i1 ∈ St\{j}, i2 ∈ St\{j, i1}, i3 ∈ St\{j, i1, i2}, . . ., il−1 ∈ St\{j, i1, i2, . . . , il−2}

and 1 ≤ l ≤ m. In the following I assume that the exogenous random terms εtj are identically

and independently type I extreme value distributed (or Gumbel distributed) with parameter

η.13 This assumption is commonly made in random utility models in econometrics (see e.g.

McFadden, 1981). Under this distributional assumption, the probability that an entering

agent t chooses the passive agent j ∈ St for creating the link tj (in the first of the m draws

12I assume that the entrant does not update the link incentive functions while forming links but evaluates
it only once after he has observed the sample. The first sum in Equation (2.3) considers the case that agent
j receives a link in the l-th round while the second sum takes into account all possible sequences of agents
i1, i2, . . . , il−1 that receive a link in the l − 1 previous rounds.

13The cumulative distribution function is given by P(ε ≤ c) = exp(− exp(−ηc − γ)), where γ ≈ 0.577 is

Euler’s constant. Mean and variance are given by E[ε] = 0 and Var(ε) = π2

6η2 .
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of link creation) follows a multinomial logit distribution given by (cf. Anderson et al., 1992)

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
eηft(Gt−1,j)

∑

k∈St
eηft(Gt−1,k)

=
1

∑

k∈St
e−η(ft(Gt−1,j)−ft(Gt−1,k))

=
1

∑

k∈St
e−ηδb(dGt−1

(j)−dGt−1
(k))+o(δb)

≈
eβdGt−1

(j)

∑

k∈St
eβdGt−1

(k)
,(2.4)

where we have applied condition (LD) for the link incentive function ft(Gt−1, ·), dropped

terms of the order o(δb) and denoted by β ≡ ηδb. Knowledge of the selection probability

in Equation (2.4) will allow us to analyze the network formation process introduced in

Definition 1. As I will show in the following sections, this process gives rise to different

network topologies, depending on the extent of the noise εtj, as measured by the scaling

parameter β and the observation radius which depends on ns. Small values of ns (local

information) refer to a local network formation process in which entering agents have only

limited observability of the prevailing network, while large values of ns (global information)

constitute a network growth process in which entrants have full information of the network.

Moreover, as β becomes large, the level of noise vanishes, and entrants choose to form links

to the agents in the sample St that maximize their link incentive function. Conversely, when

β tends to zero, then the noise term dominates and agents form links to the ones observed in

St at random. These different parameter regions are indicated in Figure 2. In the following

sections I give a more detailed account of the emerging networks depending on the level of

noise scaled by β and the observation radius ns.

3. ANALYSIS OF THE NETWORK FORMATION PROCESS

In this section I present a characterization of the different network architectures which

may arise, in dependence of the noise in the attachment kernels and the observation radius.

Section 3.1 analyzes the probability with which a class of strongly centralized networks

emerges and shows that these networks are the unique outcome almost surely if the noise

vanishes (β → ∞), irrespective of the observation radius ns. To gain further insight into the
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Prop. 3 ns

Corr. 1

Prop. 2

β
Prop. 1 (i)

Prop. 1 (ii)

large noise
local information

small noise
local information

small noise
global information

large noise
global information

Figure 2.— Illustration of the different parameter regions identified by the scaling pa-
rameter β and the observation radius ns. The figure also indicates the parameter regions to
which the results discussed in Section 3 refer. Proposition 1 (i) deals with the case of β = ∞
and arbitrary values of ns, while (ii) considers the case of β = 0. Both, Proposition 2 and
Corollary 1 assume large values of ns (such that St = Pt−1). While the first considers small
but positive values of β, the latter assumes that β = 0. Proposition 3 deals with the case of
β = 0 and small values of ns.

network topologies created by the model in the opposite case of large noise (β → 0), Section

3.2 studies the degree distributions arising for both small and large observation radii. I show

that networks tend to differ significantly for different observation radii when the exogenous

noise term is large. Due to Assumption (DC) the degree of centralization has important

efficiency implications and we will study these in Section 4.

3.1. The Emergence of Quasi-Stars

Our first result, which is central for the understanding of the network formation process

when the exogenous noise is small, is that it can produce a strongly centralized network

topology, which we term a quasi-star. A quasi-star Sm
n , n ≥ m + 1, with node set [n] ≡

{1, . . . , n} is a directed graph in which all nodes in the set [m + 1] in Sm
n are bilaterally

connected, while the nodes in the set [n − 1]\[m + 1] all maintain an outgoing link to the

agents in the set [m]. Consequently, we have that Km+1 ⊆ Sm
n .14 An illustration of various

14The complement S̄m
n of a quasi-star Sm

n , is the graph obtained from the complete graph Kd with d nodes
and a subset of n − d disconnected nodes, by adding n − d links connecting one node in Kd to each of the

14



Figure 3.— Illustration of the quasi-stars S1
7 , S

2
7 and S3

7 . Filled circles indicate the nodes
with the highest degree.

quasi-stars can be seen in Figure 3. With this definition we are able to state the following

proposition.

Proposition 1 Let (Gβ
t )t∈[T ] be a sequence of networks generated with observation radius

n
(1)
s , and (Hβ

t )t∈[T ] be a sequence of networks generated with observation radius n
(2)
s such that

n
(1)
s > n

(2)
s . Let Σm

T ⊂ G(T ) be the isomorphism class of quasi-stars of order T > m + 1.

Then,

(i) in the limit of vanishing noise, we have that limβ→∞ P(Hβ
T ∈ Σm

T ) = P(Gβ
T ∈ Σm

T ) = 1;

(ii) in the limit of strong noise, we have that limβ→0 P(H
β
T ∈ Σm

T ) > P(Gβ
T ∈ Σm

T ) > 0.

Proposition 1 shows that in the limit of vanishing noise (β → ∞), the networks generated

by our stochastic process are quasi-stars, irrespective of the observation radius ns. However,

as the level of noise becomes large (β → 0), the probability of obtaining a quasi-star is higher,

the smaller is ns. In the presence of noise, the set of networks generated by our model is

much richer than the class of quasi-stars. In order to analyze these networks, we study in

Section 3.2 the degree distribution in the case of large noise and in Section 5 we analyze

higher order correlations.

n − d disconnected nodes. This graph falls into the class of interlinked stars introduced by Goyal & Joshi
(2006) and the nested split graphs analyzed in König et al. (2011), König et al. (2009).
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3.2. Large Noise Limit and the Distributions of Degree

In this section we analyze the asymptotic degree distribution for large times t, when the

level of noise is large (for small values of β). For this purpose, let us introduce some notation.

For all t ≥ 1 we denote by Nt(k) ≡
∑t

i=0 1k(d
−
Gt
(i)) the number of nodes in the graph Gt

with in-degree k. The relative frequency of nodes with in-degree k is accordingly defined as

Pt(k) ≡ 1
t
Nt(k) for all t ≥ 1. The sequence {Pt(k)}k∈Z+ is called the (empirical) in-degree

distribution. Throughout the section I assume that there are no hubs in the network, that

is, I assume that d−Gt
(i) = op(t) for all i ∈ Pt.

We first analyze the case of the observation radius ns being large enough, such that

St = Pt−1.
15 When St = Pt−1 we have that Kβ

t (j|St, Gt−1) = Kβ
t (j|Gt−1) for all j ∈ Pt−1.

The entrant t forms links by sampling m agents without replacement from Pt−1. Note that

the probability that an agent j with in-degree d−Gt−1
(j) receives a link in the (k+1)-st draw,

given that the agents l1, . . . , lk have received a link in the previous k draws, 1 ≤ k ≤ m, is16

e
βd−

Gt−1
(j)

∑

i∈Pt−1\{l1,...,lk}
e
βd−

Gt−1
(i)

≈
1 + βd−Gt−1

(j)
∑

i∈Pt−1\{l1,...,lk}
(1 + βd−Gt−1

(i))
=

1 + βd−Gt−1
(j)

(1 + βm)t

(

1 +Op

(
1

t

))

,

where we have used the approximation eβx ≈ 1 + βx, and assumed that d−Gt−1
(i) = op(t) for

all i ∈ Pt−1. Moreover, we have used the fact that at every step t every passive agent has

out-degree equal to m. Since the average out-degree must be equal to the average in-degree,

we see that also the average in-degree must be m, and so
∑

i∈Pt−1
(1+βdGt−1(i)) = (1+βm)t.

It then follows that the probability that an agent j ∈ Pt−1 receives a link by the entrant t is

15Observe that the probability that an agent i ∈ Pt−1 does not enter the sample St is given by

Pt(i /∈ St|Gt−1) =

(

1−
1+d

−

Gt−1
(i)

t−1

)(

1−
1+d

−

Gt−1
(i)

t−2

)

. . .

(

1−
1+d

−

Gt−1
(i)

t−1−(ns−1)

)

=

(

1−
1+d

−

Gt−1
(i)

t

)ns

+ o
(
1
t

)
.

Applying Bonferroni’s inequality and neglecting terms of the order o
(
1
t

)
, we then find that the probability

that at least one of the agents in the set Pt−1 is not observed by the entrant is bounded by Pt(
⋃

i∈Pt−1
{i /∈

St}|Gt−1) ≤
∑t−1

i=1 Pt(i /∈ St|Gt−1) ≈
∑t−2

k=0

(
1− 1+k

t

)ns

Pt(k) ≈
∑t−2

k=0

(
1− ns

1+k
t

)
Pt(k) = 1 − ns

1+m
t

,

where we have assumed that k = op(t), and used the fact that the average in-degree
∑t−2

k=0 kPt(k) equals the
out-degree m. Hence, if we require the probability of an agent not being sampled to be lower than ǫ > 0,
then we must have that ns > t 1−ǫ

1+m
.

16This probability is the same whether we use the in-degree d−Gt−1
(j) or the total degree dGt−1

(j), since

they are related as dGt−1
(j) = d+Gt−1

(j) + d−Gt−1
(j) = m+ d−Gt−1

(j).

16



given by

Kβ
t (j|Gt−1) ≈ 1−

(

1−
1 + βdGt−1(j)

(1 + βm)t

)m

+ o

(
1

t

)

= 1−

(

1−m
1 + βdGt−1(j)

(1 + βm)t

)

+ o

(
1

t

)

=
m

1 + βm

1 + βdGt−1(j)

t
+ o

(
1

t

)

.(3.1)

Having derived the attachment kernel, we are now able to obtain the asymptotic degree dis-

tribution in the following proposition. The proof of the proposition can be found in Appendix

B.2.

Proposition 2 Fix ǫ > 0 small and let β ∈ (0, ǫ), m ≥ 1. Assume that dGt−1(j) = op(t)

for all j ∈ Pt−1. Consider the sequence of in-degree distributions {Pt}t∈N generated by an

indefinite iteration of the network formation process (Gβ
t )t∈N assuming that St = Pt−1 for

every t > m+ 1. Then, Pt(k) → P β(k), almost surely, where

(3.2) P β(k) =
1 + βm

1 +m(1 + β)

Γ
(

1
β
+ k
)

Γ
(

2 + 1+βm
βm

)

Γ
(

1
β

)

Γ
(

2 + 1+m
1+βm

+ k
) ,

for all k ≥ 0.

The expression for the degree distribution can be simplified when we focus on large degrees.

Using Stirling’s formula, we get (for large k) the approximation (see Appendix B.2 for the

details)

(3.3) P β(k) = (1 + βk)−(2+
1

mβ )
(

1 +O

(
1

k

))

.

Thus, Proposition 2 shows that in the limit of large noise and a large observation radius we

obtain networks with a degree distribution that decays as a power law with exponent 2+ 1
mβ

for large degrees. The tail flattens with increasing m, making high degree agents more likely

as entering agents are forming more links. Note, however, that the power-law decay does not

hold for small degrees. The degree distribution of Equation (3.2) and a typical distribution

obtained from a numerical simulation of the network formation process are shown in Figure

5. The smaller is the number of linksm created by an entrant, and the stronger the exogenous
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noise (the smaller β) the higher is the decay in the power-law tail of the distribution, making

high degree agents less likely and reducing inequality. In the extreme case that we assume

“strong noise”, corresponding to the situation with β = 0, we obtain a process of uniform

attachment (cf. Bollobás et al., 2001).

Corollary 1 In the network formation process (Gβ
t )t∈N assuming that St = Pt−1 for

every t > m + 1 and β = 0 the agents perform a uniform attachment process whose degree

distribution is given by

(3.4) P 0(k) =
1

m+ 1

(
m

m+ 1

)k

,

a geometric distribution with parameter m
m+1

for all k ≥ 0..

When St does not encompass all agents in Pt−1, then our analysis becomes more compli-

cated. We therefore restrict our discussion to the case of “strong noise” when β = 0. In this

case we have that the attachment kernel from Equation (2.4) (which gives the probability

that j receives a link from the entering agent given that j is in the sample St) is

K0
t (j|St, Gt−1) =

m

|St|
1St

(j).

The sample size is bounded by |St| ≤ ns(m+1). If no agent enters the sample more than once,

then equality holds. The sample St is constructed by selecting ns nodes from Pt−1 without

replacement, and forming the union of these nodes and their out-neighbors. Assuming that

ns = o(t) and dGt−1(j) = op(t), the probability that a node is entering St more than once is

of the order o(t) and thus

(3.5)
1

|St|
=

1

ns(m+ 1)
+ op

(
1

t

)

.

The unconditional probability that an agent j ∈ Pt−1 receives a link by the entrant t is then

given by

K0
t (j|Gt−1) =

1

ns(m+ 1)
P(j ∈ St|Gt−1) + o

(
1

t

)

.
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If the degree of node j is small compared to the network size t, i.e. dGt−1(j) = op(t), and the

observation radius is small such that ns = o(t), then

P(j ∈ St|Gt−1) = ns

1 + dGt−1(j)

t
+ o

(
1

t

)

,

and we obtain

K0
t (j|Gt−1) =

ns

ns(m+ 1)

1 + dGt−1(j)

t
+ o

(
1

t

)

=
1

1 +m

1 + dGt−1(j)

t
+ o

(
1

t

)

.(3.6)

We then can state the following result for the asymptotic degree distribution when the

observation radius is small. The proof can be found in Appendix B.2.

Proposition 3 Consider the sequence of degree distributions {Pt}t∈N generated by an in-

definite iteration of the network formation process (Gβ
t )t∈N with a small observation radius

ns = o(t). Assume that β = 0 and dGt−1(j) = op(t) for all j ∈ Pt−1. Then, we have that

Pt(k) → P (k), almost surely, where

(3.7) P (k) =
(1 +m)Γ

(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m
+ k
) ,

for all k ≥ 0.

For large values of k we can write Equation (3.7) as

(3.8) P (k) = k−(2+ 1
m)
(

1 +O

(
1

k

))

,

which is a power-law with exponent 2 + 1
m
. A comparison with numerical simulations can

be found in Figure 5. Compared to the power-law behavior in Equation (3.3) obtained

for a large observation radius, we find that the degree distribution in the case of a small

observation radius has fatter tails, making high degree agents more likely, and indicating a

more hierarchical organization of the network. This is due to the fact that agents with a high

degree can be found in a larger number of neighborhoods when entrants form the sample St

and thus are more likely to receive a link. Also, when entrants form more links (by increasing

m) the probability of agents with a high degree increases (which can be seen from a smaller
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exponent of the power-law decay).

Observe that the degree distribution in Equation (3.7) does not depend on the number ns

of samples taken by the entering node. The reason is that two effects on the probability to

receive a link of an incumbent cancel each other: On one hand, a larger value of ns makes

it more likely that an agent enters the sample St, and hence increases the probability that

he receives a link. On the other hand, a higher value of ns also increases the sample size |St|

and thus decreases the probability that he is selected by the entrant to receive a link.

The results obtained in this section show that when agents have global information, the

presence of strong noise (β → 0) induces networks with a smaller degree variance (following

from the geometric distribution of Corollary 1) than when agents have only local information

to form links (as implied by the power-law distribution of Proposition 3). However, as we

have seen in part (i) of Proposition 1, in the absence of noise (as β → ∞), the amount of

information available to the agents when forming links does not matter, and the emerging

network will be a quasi-star with a high degree variance. These results are indicated in

Figure 2. Hence, whether or not a limited observation radius impacts inequality in outcome

networks depends crucially on the level of exogenous noise in agents’s payoffs. The degree

variance is also closely related to aggregate payoff and efficiency, and this will be discussed

in more detail in the next section.

4. EFFICIENCY

Since we have computed the degree distribution in Section 3 for different values of the

observation radius ns, by virtue of Assumption (DC) we can readily state the following

efficiency result.

Proposition 4 Consider the sequence of networks (Gβ
t )t∈[T ] generated with an observation

radius n
(1)
s large such that St = Pt−1 for all t ≥ m+2, and (Hβ

t )t∈[T ] with a small observation

radius n
(2)
s = o(t) and assume that dHt

(i) = op(t) for all i ∈ Pt as t becomes large. Let

Π(Gβ
T , δ) and Π(Hβ

T , δ) be the aggregate payoff under Gβ
T , respectively Hβ

T , after T iterations.

Then, almost surely,

(i) for β → ∞ we have Π(Hβ
T , δ) = Π(Gβ

T , δ) = Π(Σm
T , δ), where Σm

T ⊂ G(T ) is the

isomorphism class of quasi-stars of order T ;
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Figure 4.— Degree variance σ2
d for local (ns = 1) and global (ns = t) search strategies

for different values of β with m = 1, T = 104 nodes (averaged over 10 simulation runs). The
degree variance of the star K1,T−1 is given by σ2

d(K1,T−1) = (T − 1)(T − 2)2/T 2.

(ii) in the limit of large T , we have for β → 0 that Π(Hβ
T , δ) > Π(Gβ

T , δ).

A comparison of the degree variance σ2
d for different observation radii ns (local vs. global)

obtained by means of numerical simulations for T = 104 agents with different values of β

can be seen in Figure 4. The figure shows that aggregate payoff is higher for Gβ
T (global

information) if β is high enough, however, the opposite holds for small values of β, where

aggregate payoff is higher for Hβ
T (local information).

Proposition 4 and Figure 4 show a major difference between the model considered here

and the one by Jackson & Rogers (2007). In Jackson & Rogers (2007) a higher ratio of

(local) neighborhood based linking to (global) random based linking is always increasing

average payoff as long as payoff is a convex function of degree.17 However, here we find

that this does not hold in general when exogenous effects are taken into account, where this

relationship might be reversed. Also, when the marginal payoff of agents is increasing in the

degree (and there is no exogenous noise), then differently to the welfare results obtained

in Jackson & Rogers (2007), whether links are formed locally or globally has no impact

on average payoffs and efficiency. Thus, the introduction of noise into decisionmaking in a

network based meeting process matters for efficiency results.

17See Corollary 1 and Footnote 51 in Jackson & Rogers (2007).
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5. LARGE NOISE LIMIT AND HIGHER ORDER STATISTICS

In the following sections I analyze correlations between an agent and his neighbors. Such

correlations are not only interesting as they help us to understand the behavior of our model

for different parameter values but also to compare it with correlations observed in real world

networks.18

In Section 5.1 we first investigate the average in-degree of the in- and out-neighbors of a

node with in-degree k, denoted by the average nearest in-neighbor connectivity k−
nn(k) and

the average nearest out-neighbor connectivity k+
nn(k) (Pastor-Satorras et al., 2001). Next, in

Section 5.2, we analyze the fraction of connected neighbors of a node with degree k (in the

closure of the network), referred to the clustering coefficient C(k) (Watts & Strogatz, 1998).

Note that, in order to derive the functional forms of these statistics, I consider a contin-

uous representation of our discrete dynamical system, the so called continuum approxima-

tion, in which both time t and degree k are treated as continuous variables in R+.
19 Using

the continuum approximation, we can then apply the rate equation approach outlined in

Barrat & Pastor-Satorras (2005) to compute higher order correlations in the network.

5.1. Average Nearest Neighbor Connectivity

In this section we analyze two vertex degree correlations, i.e. correlations between the

degree of an agent and his neighbors’ degrees. Let P (k′|k′ → k) denote the probability that

a node of in-degree k has an in-neighbor with in-degree k′. The average in-degree of in-

neighbors of nodes with in-degree k can then be written as k−
nn(k) =

∫∞

0
k′P (k′|k′ → k)dk′

(Pastor-Satorras et al., 2001).20 In the case that k−
nn(k) is an increasing function of k we

speak of assortative mixing, while for k−
nn(k) decreasing with k we have dissortative mixing

(Newman, 2002). Similarly, the average nearest out-neighbor connectivity k+
nn(k) can be

defined. We now derive these quantities for different observation radii.

18See Section 7 for an empirical application of the model to a network of inventors, a network of firm
alliances and the network of trade relationships between countries.

19This is an approximation which has shown to be accurate in various growing network models as T → ∞
(Dorogovtsev & Mendes, 2003, pp. 117). See Appendix B.4 for more discussion.

20In the case of for uncorrelated networks we have that P (k′|k′ → k) = k′P (k′), where P (k) is the
probability to find a node with in-degree k in the network G. Consequently, we get for uncorrelated networks

that k−nn(k) =
∫∞

0
k′P (k′|k′ → k)dk′ = E[k2]

E[k] , where E[k] =
∫∞

0
kP (k)dk = k̄ is the average in-degree in G

(see Boguñá & Pastor-Satorras, 2003).
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In the case of global information (when the observation radius ns is large) and small β

(large noise) we obtain the following proposition:21

Proposition 5 Consider the network formation process (Gβ
t )t∈R+ with St = Pt−1. Then

under the continuum approximation in the limit β → 0 the average nearest in-neighbor in-

degree of an agent with in-degree k is given by

(5.1) k−
nn
(k) =

1

β2k
(1 + (1 + βk)(ln(1 + βk)− 1)) ,

and the average nearest neighbor out-degree is given by

(5.2) k+
nn
(k) =

1

β2m

((

βm(1 + p(β − 1)) +
a

s
s2aζ(s, 2a)

)( t

s+ 1

)a

−mβ

)

,

where a = βm
1+βm

, s = t(1 + βk)−
1
a as t → ∞.

From Proposition 5 we find that for large k, the average nearest in-neighbor connectivity

grows logarithmically with k and is independent of t, while the average nearest out-neighbor

connectivity becomes independent of k and grows with the network sizes as t
βm

1+βm . Figure 5

provides a comparison of numerical simulations with the theoretical predictions of Proposi-

tion 5.

Similarly, we can compute the nearest neighbor connectivities under local information

(when the observation radius ns is small) assuming strong noise (β = 0).

Proposition 6 Consider the network formation process (Gβ
t )t∈R+ with ns small. If β = 0

then under the continuum approximation the average nearest in-neighbor in-degree of an

agent with in-degree k is given by

(5.3) k−
nn
(k) =

1

k
(1 + (k + 1) ln(k + 1)− 1) ,

21The Hurwitz zeta function is defined by ζ(s, a) ≡
∑∞

n=0
1

(a+n)s .
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and the nearest out-neighbor degree is given by

(5.4) k+
nn
(k) =

(

Γ(2 +m)2

Γ
(
1 +m+ m

m+1

)2 +
1

m+ 1
ζ

(
2m

m+ 1
, 2 +m

))

t
m−1
m+1 (1 + k)

1
m ,

as t → ∞.

For large k we find that k−
nn(k) grows logarithmically with k, is independent of the network

size t, and k+
nn(k) grows as O

(

t
m−1
m+1 · k

1
m

)

. In Figure 5 a comparison of numerical simulations

with the theoretical predictions of Proposition 6 is shown.

In both cases, local as well as global information (corresponding to Propositions 5 and

6, respectively), we find that networks are characterized by positive degree correlations,

or assortative mixing. The intuition for this result derives from the observation that older

agents form links to other old agents with high degrees, while younger agents are more likely

to form links to agents with smaller degrees. This gives rise to an assortative trend in the

average nearest out-neighbor degree k+
nn(k). This intuition carries over to the average nearest

in-neighbor degree k−
nn(k), but the average degree of the in-neighbors of older nodes is much

smaller, because in this case the in-neighbors include also a large number of younger nodes.

Consequently, we observe that the assortative trend is much weaker in the case of the average

nearest in-neighbor degree k−
nn(k) (growing only logarithmically with the degree k).

If we compute the average nearest neighbor degree in the closure Ḡ of G, then the average

nearest neighbor degree knn(k) (the sum of in- and out-neighbors’ total degrees divided by the

total degree) of older nodes is similar to the case of the average nearest in-neighbor degree,

however, the average nearest neighbor degree of younger nodes is now higher because the

average nearest neighbor degree includes not only the in-neighbors but also the out-neighbors

which tend to have higher degrees. Therefore, we expect to see a dissortative trend in the

average nearest neighbor connectivity knn(k) in the closure Ḡ. This intuition is confirmed by

combining the results we have obtained for k+
nn(k) and k−

nn(k).
22

As we will see in the next section, the similarities between local and global observability

do not carry over to the case of three vertex correlations, where networks generated under

22An increasing total nearest neighbor connectivity knn(k) can be obtained in two possible extensions of
the model, considering undirected links (see Section 6.1), or heterogeneous linking opportunities (see Section
6.2).
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local and global information produce starkly different results.

5.2. Clustering Degree Correlations

In this section I study three vertex degree correlations in the undirected network obtained

from the closure Ḡβ
t of the directed network (Gβ

t )t∈R+ . The clustering coefficient C(k) is

defined as the probability that a vertex of degree k in Ḡβ
t is connected to vertices with

degrees k′ and k′′, and that these vertices are themselves connected, averaged over all k′ and

k′′ (Watts & Strogatz, 1998).23 Note that in the case of m = 1 all networks will be trees,

Ḡβ
t ∈ T ([t]), which are characterized by a vanishing clustering coefficient. Hence, we will

consider only the case of m > 1 in this section.

Similarly to the case of two vertex degree correlations in the previous section, we can

derive the clustering coefficient using a rate equation approach (Barrat & Pastor-Satorras,

2005). With global information (St = Pt−1) and small β (strong noise) we can state the

following proposition.

Proposition 7 Consider the network formation process (Gβ
t )t∈R+ with St = Pt−1 and

m > 1. Then under the continuum approximation in the limit β → 0 the clustering coefficient

of an agent with degree k is given by

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(
(1 + βk)b − 1

)

×

(

b

(
s

s+ 1

)a
(
β2m+ as2a−1ζ(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

,(5.5)

23Following Boguñá & Pastor-Satorras (2003), let P (k′, k′′|k′ ∼ k, k′′ ∼ k) denote the joint probability
that a vertex of degree k has neighbors of degrees k′ and k′′. Further, let P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k) denote
the probability that vertices with degrees k′ and k′′ are connected, given that they are neighbors of a vertex
with degree k. Then we can write for the clustering coefficient as C(k) =

∫∞

0

∫∞

0
P (k′, k′′|k′ ∼ k, k′′ ∼

k)P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k)dk′′dk′. The average clustering coefficient is defined as C =
∫∞

0
C(k)P (k)dk.

If degree correlations vanish, then we can obtain a simple expression for the clustering coefficient. Let
P (k′|k ∼ k′) be the conditional probability that a vertex of degree k has a neighbor of degree k′. For an
uncorrelated network G ∈ G(n) it follows that P (k′, k′′|k′ ∼ k, k′′ ∼ k) = P (k′|k ∼ k′)P (k′′|k ∼ k′′) and

P (k′ ∼ k′′|k′ ∼ k, k′′ ∼ k) = (k′
−1)(k′′

−1)
E[k]n , so that C(k) = (E[k2]−E[k])2

E[k]3n , which is independent of k.
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where a = βm
1+βm

, b = 2− 1
a
, the initial condition is

Ms+1 =
m(m− 1)s2a−2

(1 + βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + βm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j

)

and s = t(1 + βk)−
1
a as t → ∞.

The clustering coefficient in Equation (5.5) for m = 4 and β = 0.1 can be seen in Figure 5.

For large k (and small s, respectively) the first term in the initial condition Ms+1 dominates,

and the asymptotic behavior of the clustering coefficient is given by

(5.6) C(k) = O
(

t−
2

1+mβ · k2( 1
mβ

−1)
)

.

This expression grows with k as a power-law with exponent 2
(

1
mβ

− 1
)

.24 Moreover, we find

that the clustering coefficient is decreasing with the network size as t−
2

1+mβ . Hence, for large

networks with a high clustering coefficient (such as the network of coinventors; see Section

7), the assumption of global information seems to be at odds with the empirical observation.

When agents have only local information and β = 0 (strong noise) we obtain clustering

degree correlations as given in the next proposition.

Proposition 8 Consider the network formation process (Gβ
t )t∈R+ with ns = o(t) small

assume that m > 1. Let a = m
m+1

and b = a(m−1)
ns(m+1)−1

with a > b > 0. If β = 0 then under the

continuum approximation the clustering coefficient C(k) of an agent with degree k is bounded

by C(k) ≤ C(k) ≤ C(k), where

C(k) =
2bk + 2(a(m− 1)− bm)

(

(1 + k)
b
a − 1

)

(a− b)(k +m)(k +m− 1)
,(5.7)

and

C(k) =
2a(m− 1) + 2b(k +m) + (a (m(m+ 1)− 2)− bm(1 +m)) (1 + k)

b
a

(a− b)(k +m)(k +m− 1)
,(5.8)

24We need only consider values of k such that C(k) does not exceed its upper bound given by one.
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with the property that C(k) = O
(
1
k

)
.

The bounds for the clustering coefficient in Equations (5.7) and (5.8) for m = ns = 4 can

be seen in Figure 5. The figure confirms the asymptotic decay of the clustering coefficient

as a power-law with exponent minus one. Note that, in contrast to the results obtained

in Proposition 7, the clustering coefficient in Proposition 8 does not vanish as the network

becomes large. Moreover, the clustering coefficient shows a power-law decay which is a typical

feature of all the empirical networks we consider (see Section 7), indicating that a limited

observation radius is a general constraint in the creation of various real world networks.

Comparing the results for global and local information, we find that networks generated

under global information produce relatively low clustering and a positive degree clustering

correlation. This is what one would expect from a global link formation process in which

the formation of cliques is very unlikely, and becomes more unprobable the later an agent

enters. Hence, we find an increasing clustering degree correlation since older agents tend

to have higher degrees. However, networks formed with local information tend to produce

higher clustering and a negative clustering degree correlation (see also Figure 5). Local link

formation favors the creation of links between neighboring agents making the network highly

clustered. Moreover, the large number of younger agents that connect to the older ones with

higher degrees are less clustered and thus we observe a negative clustering degree correlation.

6. ROBUSTNESS ANALYSIS AND EXTENSIONS

In this section I briefly discuss two possible extensions of the model analyzed in the

previous sections.

6.1. Undirected Links

An extension to the network formation process we have introduced in Definition 1 is to

allow entering agents to observe not only the out-neighbors of incumbent agents (the ones

to which these agents have formed links) but also their in-neighbors (the ones from which

they have received links). The resulting network can then be viewed as an undirected graph.

One can show that the distributions of the network statistics we have considered follow a

similar behavior as in the case of directed links. The degree distribution exhibits a power
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Figure 5.— (Top row) Comparison of simulation results with the theoretical predictions
for T = 105, St = Pt−1 and m = 4 with β = 0.1 under the linear approximation to
the attachment kernel. (Bottom row) Comparison of simulation results for T = 105 and
ns = m = 4 (β = 0) with the theoretical predictions.

law decay k−α with exponent α = 3+ 1
mβ

for a large observation radius and α = 3+ 1
m

for a

small observation radius. Note, however, that by introducing undirected links, the rigorous

approach to derive the degree distributions for a small observation radius in Section 3.2 is

not viable any more, because one cannot compute the sample size |St|. Instead, one has to

resort to an approximation as |St| ≈ ns(d̄+1). The results obtained using this approximation

are given in Appendix D.

6.2. Heterogeneous Linking Opportunities

We can introduce heterogeneity in the linking opportunities of entering agents by assuming

that a fixed fraction 1−p, with p ∈ (0, 1), of the population of agents does not form any links,

and remains passive throughout the evolution of the network. Moreover, one can also allow

for a varying number of links to be created by each entrant following a certain distribution

function with given mean m ≥ 1. This extension is studied in the accompanying Appendix

E. We find degree distributions that follow a power law decay k−α with exponent α = 2+ 1
βmp

for a large observation radius and α = 1 + 1+m
pm

for a small observation radius. The main

difference with respect to the basic model in Definition 1 is that this extension gives rise

to a nontrivial component structure of the network, where the component size distribution

exhibits a power-law decay. In the special case of β = 0 and ns = m = 1 one can show that
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the distribution P (s) of components of size s is identical for both large and small observation

radii and decays as a power law with exponent 1+ 1
p
. Moreover, we find an assortative trend

for the nearest neighbor connectivity (in the closure of the graph) when the observation

radius ns and p are small enough in the large noise limit (β → 0). Note, however, that

differently to Proposition 1, a value of p < 1 can lead to the emergence of multiple quasi-

stars in the limit of vanishing noise (β → ∞) when the observation radius is small, and an

analytic characterization as in Proposition 1 becomes harder to obtain.

7. EMPIRICAL IMPLICATIONS

In order to bring the model to data, I consider three different real world networks in

which knowledge diffusion and spillovers are an important source of knowledge generation

and dissemination.

First, I analyze USPTO patent data in the year 2009 (see Lai et al., 2009, for a more

detailed description of the data). I consider only patents in the drugs and medical sector with

patent classification numbers 424 and 514 (see also the classification in Hall et al. (2001)). I

focus on the drugs development sector, due to the high collaboration intensity in this sector,

as well as for practical reasons, since for the size of the subsample corresponding to this sector

our estimation process is feasible, while larger sample sizes would make the estimation of

the model computationally difficult.25 The network of coinventors is constructed by creating

a link between any pair of inventors that has appeared together on a patent. The resulting

network is undirected. I use this network as a proxy for the social network of inventors, in

which local knowledge spillovers take place.26 This gives us a network with 27492 nodes, an

average degree of d̄ = 3.51, a degree variance of σ2
d = 30.03 (with a coefficient of variation

of cv ≡ σd/d̄ = 0.94). The distribution of degree is highly skewed, following a power law

for large degrees (see Figure 6). The network is highly clustered with an average clustering

coefficient of C = 0.64 and a negative clustering-degree correlation (Figure 6). Moreover,

25The statistics computed for this subsample of the original data set are similar as in the full sample, or
other subsamples for different sectors.

26As noted by Fafchamps et al. (2006), in the context of scientific coauthorship networks, the (unob-
served) social network of personal acquaintances has more links than the coinventor network. However, the
acquaintance network includes the coinventor network because it can reasonably be assumed that individuals
who have appeared on a patent together know each other, and it can be used as a proxy for the network of
acquaintances.
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the network is assortative, with an assortativity coefficient of κ = 0.28 (Newman, 2002).27

The nearest neighbor average degree is monotonically increasing with degree (Figure 6). The

largest component consists of 12060 nodes (which is 44% of all nodes).

Second, I consider a sample of a firm alliance network with alliances initiated before the

year 2009. The data stems from the Thomson SDC alliance data base (cf. Gay & Dousset,

2005, Rosenkopf & Schilling, 2007, Schilling, 2009). I focus on the biotech sector (according

to the Thomson SDC classification scheme), due to its high R&D collaboration intensity

(Powell et al., 2005). The data base provides only information about the identity of the

alliance partners (and not who initiated it) and so this network is undirected. The network

of alliances is viewed as a proxy for the network of knowledge exchange and diffusion between

firms. I obtain a network with 7374 nodes, an average degree of d̄ = 1.79 and a degree variance

of σ2
d = 8.33 (the coefficient of variation is cv = 1.62). The degree distribution follows a

power-law (see Figure 6). Clustering is almost absent in the network of firms (C = 0.0044)

and it is weakly assortative with κ = 0.018. The largest component consists of 3379 nodes

(which is 46% of all nodes), which is similar to the network of coinventors.

Third, I consider the network of trade relationships between countries in the year 2000 (see

Gleditsch, 2002, for a more detailed description of the data). Trade relationships in this data

set are viewed as indicators of knowledge flows between countries (cf. Bitzer & Geishecker,

2006, Coe & Helpman, 1995). The trade network is defined as the network of import-export

relationships between countries in a given year in millions of current-year U.S. dollars. I

construct an undirected network in which a link is present between two countries if either

one has exported to the other country. The trade network contains 196 nodes, has an average

degree of d̄ = 42.22, a degree variance of σ2
d = 1524.16 and a coefficient of variation of

cv = 0.92. The network of trade is highly clustered with C = 0.73. The clustering degree

correlation is negative (see Figure 6). Moreover, differently to the inventor and alliance

network, it is dissortative, with a coefficient of κ = −0.40, and a monotonically decreasing

average nearest neighbor degree (Figure 6). The network consists of a giant component with

27The assortativity coefficient κ ∈ [−1, 1] is essentially the Pearson correlation coefficient of degree between
nodes that are connected. Positive values of κ indicate that nodes with similar degrees tend to be connected
(and knn(k) is an increasing function of the degree k) while negative values indicate that nodes with different
degrees tend to be connected (and knn(k) is a decreasing function of the degree k). See Newman (2002) and
Pastor-Satorras et al. (2001) for further details.
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181 nodes, encompassing 92% of all nodes in the network.

In order to estimate the parameters of the model I follow the Likelihood-Free Markov Chain

Monte Carlo (LF-MCMC) algorithm suggested by Marjoram et al. (2003). The details of this

algorithm are outlined in Appendix C.28 I analyze both the basic model with directed links

introduced in Definition 1 and the extension with undirected links, which has been discussed

in Section 6.1. Moreover, I allow for heterogeneous linking probabilities, including the basic

model when these probabilities are set to one, as discussed in Section 6.2 (for both models,

directed and undirected links).29

The estimated parameter values are shown in Table I. Moreover, Figure 6 shows various

distributions for the inventor network, the firm alliance network and the network of trade

relationships between countries, comparing fitted theoretical predictions of the model with

empirical observations. The comparison of observed and the simulated distributions shown

in Figure 6 indicate that the model can well reproduce the observed empirical networks.30

The fit is in general better if entering agents are allowed to observe both, the out- and in-

neighbors of the incumbents (see Section 6.1) and we allow for heterogeneity in the number

of links being created (see Section 6.2).

Comparing the estimated observation radius ns for the inventor network to the one for the

firm network in Table I, we find that the number of observed agents by an entrant is much

larger for firms than it is for inventors.31 Hence, firms tend to use a significantly larger in-

formation set for their linking decisions than individual inventors. A similar observation can

be made for the network of trade relationships between countries. This can be interpreted as

an indicator for the presence of economies of scale in the information processing capabilities

of larger organizations (such as firms compared to individual inventors). Moreover, the tran-

sition from assortative to dissortative networks for the network of coinventors, the network

28See Sisson & Fan (2011) for an introduction to LF-MCMC, Robert & Casella (2004) for a general dis-
cussion of MCMC approaches, and Chib (2001) and Chernozhukov & Hong (2003) for applications of MCMC
in econometrics.

29The initial condition (starting from a complete graph), which does not significantly impact the statistics
in large networks, can affect the results in small networks such as the trade network. Hence, for the network
of trade relationships between countries, I start from an empty network. This restriction, however, is not
crucial since its main effect is a slight reduction in the clustering coefficient for higher degree nodes.

30Estimating the model on an empirical network of coauthorships between physicists (Newman, 2001)
shows a similarly good fit of the model as for the network of coinventors.

31Computing the Z-statistic for the differences in the sample means shows that the they are highly
significantly different.
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TABLE I

Estimation of the model parameters Θ = (m,β, ns, p) for the network of inventors, the

network of firms and the trade network.A Two model specifications are considered: the
case of entering agents observing only the out-neighbors of selected incumbents

(Model A), as in Definition 1, and the case of entrants observing both, the out- and
in-neighbors of the selected incumbents (Model B), as discussed in Section 6.1. For both

models heterogeneity in the linking probabilities p ∈ [0, 1] are taken into account, as
discussed in Section 6.2.

Inventor Network Firm Network Trade Network
Model A Model B Model A Model B Model A Model B

T 27495 7374 196
ns 1.00 (0.00) 1.00 (0.00) 30.41 (0.50) 32.43 (1.10) 62.45 (4.01) 59.68 (5.28)
p 0.60 (0.00) 0.57 (0.00) 0.56 (0.05) 0.81 (0.01) 0.32 (0.00) 0.59 (0.00)
m 8.47 (0.05) 4.50 (0.02) 5.60 (0.81) 1.02 (0.02) 136.02 (1.22) 39.76 (0.47)
β 1.13 (0.14) 1.39 (0.12) 0.00 (0.00) 0.02 (0.00) 1.56 (0.24) 13.34 (2.21)

n 10000 10000 25000 10000 500000 1000000

A Standard errors, reported in parenthesis, are calculated from batch means of length 10 (Chib, 2001).
The maximum number of iterations, n, of the Markov chain has been chosen for each model and data
set individually to ensure the convergence of the chain (see also Appendix C).

of firms and the trade network (see the change of knn(k) from an increasing to a decreasing

function of k in Figure 6, third column) can be explained from an increasing observation

radius ns in the formation of these networks.

8. CONCLUSION

The current paper analyzes the growth of networks where agents’ payoffs depend on com-

munication or spillovers of valuable information form others through the links between them.

An agent’s linking incentives can be decomposed into a network dependent part and an in-

dependent exogenous random term, referred to as noise. The network formation process

sequentially adds agents to the network. Upon entry, each agent can sample a given number

ns (the observation radius) of existing agents in the network and observes these agents and

their neighbors. The set of observed agents constitute the sample St. The entrant then forms

links to the agents in St based on his linking incentives.

I analyze the emerging networks for different observation radii ns and levels of noise. I

find that for small noise the observation radius does not matter and strongly centralized

networks emerge. However, for large noise, a smaller observation radius generates networks

with a larger degree variance and a higher aggregate payoff. I then estimated the model
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Figure 6.— Empirical degree distribution P (d) (first column), clustering-degree corre-
lation C(d) (second column), average nearest neighbor connectivity knn(d) (third column)
and component size distribution P (s) (fourth column) constructed from (first row) USPTO
patents on drugs (patent classes 424 and 514), (second row) firm R&D alliances in the
biotechnology sector and (third row) the world trade network in the year 2000 (data points
indicated by 2). The insets show the results obtained from the network formation process
with directed links (△), corresponding to Model A in Table I, while the larger figure shows
the distributions obtained from the model with undirected links (◦), corresponding to Model
B in Table I.
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using three different empirical networks: the network of coinventors, firm alliances and trade

relationships between countries. I find that the model can reproduce the observed patterns

for all these networks. The estimation shows that with increasing levels of aggregation (from

individuals to firms or countries), the observation radius ns is increasing. This indicates the

presence of economies of scale in which larger organizations are able to collect and process

greater amounts of information.

The paper could be extended along several directions. First, I have assumed that the net-

work is formed by incoming agents only, while neglecting the possibility of incumbent agents

to form links. It would be interesting to extend the model by allowing both, entering and

incumbent agents to form links in a similar way (such as in Cooper & Frieze, 2003). Second,

an extension of the analysis presented here could investigate further network measures and

analyze additional network data sets beyond the ones studied in this paper (such as the

coauthor network analyzed in Goyal et al. (2006)). This could help to shed light on the gen-

erality of the patterns I have identified. Finally, the payoff functions considered in Section

2.1 typically assume that spillover effects (as measured by the parameter δ) are weak. An

extension of the current paper could investigate the effect of stronger spillover effects on the

emerging network structures and their impact on efficiency.
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APPENDIX A: PAYOFF FUNCTIONS

This appendix contains a discussion of various models in the economic literature that
satisfy Assumptions 1 and 2 introduced in Section 2.1.

A.1. Information Diffusion in Networks

Following Fafchamps et al. (2010) I consider agents that exchange information in a network
G, where information that travels longer paths is discounted by a factor δ ∈ [0, 1]. It is
assumed that information can travel both ways of a link and so I consider the (undirected)
paths in the closure Ḡ of G. The probability that an agent j transmits information along
a given path in Ḡ is independent of the probability that the same agent j transmits the
same information along another path. With this assumption, the probability that agent i
receives the information over distance k when there are ckij(Ḡ) (undirected) paths of length
k connecting i to j becomes

P δ
ij(G) ≡ 1−

∞∏

k=1

(1− δk)c
k
ij(Ḡ).

The payoff πi : G(n) × R+ → R of agent i is defined as πi(G, δ) ≡ V
∑

j∈N P δ
ij(G) − cd+G(i)

with V > 0 and a fixed cost c ∈ [0, V δ) for each link the agent has initiated. When the decay
parameter δ is sufficiently small, we can write (1− δk)c ≈ 1− cδk. With this approximation
the payoff of agent i becomes

πi(G, δ) ≡ V
∑

j∈N

(

1−
∞∏

k=1

(1− δk)c
k
ij(Ḡ)

)

− cd+G(i)

= V



δdG(i) + δ2
∑

j∈NG(i)

dG(j)



− cd+G(i) +O(δ3).

It then follows that the link incentive function is given by fi(G, j) = V δ−c+V δ2dG(j)+O(δ3).
Link monotonicity (LM) holds if c < V δ and degree monotonicity (LD) holds for g(x) = V x
and γ = 2, since fi(G, j)−fi(G, k) = V δ2(dG(j)−dG(k))+O(δ3). As our measure of welfare
we consider aggregate payoff given by

Π(G, δ) = V δ
∑

i∈N

dG(i) + V δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= (2V δ − c)e(Ḡ) + V δ2
∑

i∈N

dG(i)
2 +O(δ3)

= (2V δ − c)e(Ḡ) +
4V δ2

n
e(Ḡ)2 + V δ2nσ2

d(G) +O(δ3)
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where we have used the fact that
∑

i∈N

∑

j∈NG(i) dG(j) =
∑

i∈N dG(i)
2. The average degree

is d̄ = 1
n

∑n
i=1 dG(i) =

2e(Ḡ)
n

. The degree variance is given by σ2
d(G) = 1

n

∑

i∈N (dG(i)− d̄G) =
1
n

∑n
i=1 dG(i)

2− d̄2 = 1
n

∑n
i=1 dG(i)

2− 4e(Ḡ)2

n2 . It follows that for small δ, such that terms of the
order O(δ3) become negligible, maximizing aggregate payoff Π(G, δ) (given n and e) becomes
equivalent to maximizing the degree variance σ2

d(G), and condition (DC) holds.

A.2. Two-Way Flow Communication

The two-way flow model with decay has been introduced by Bala & Goyal (2000). In this
model links are interpreted as lines of communication between two individuals. If i wants to
communicate with j then i must first pay a fee of c ≥ 0 to open the channel. By creating
this link i does not only get access to j but also to all individuals that are approachable by j
via an (undirected) path in the closure Ḡ. Formally, the payoff function πi : G(n)×R+ → R

of agent i ∈ N is given by32

(A.1) πi(G, δ) ≡ 1 +
∑

i 6=j

δℓ(i,j,Ḡ) − cd+G(i),

for some δ ∈ [0, 1], which is interpreted as the degree of friction in communication. The
number ℓ(i, j, Ḡ) is the length of the shortest path connecting agent i with j in the graph Ḡ.
If i and j are not connected we adopt the convention that ℓ(i, j, Ḡ) = ∞. The difference to
the payoff function in Fafchamps et al. (2010) of the previous section and the one in Equation
(A.1) is that in the latter only the shortest paths matter.

In the following we assume that the network Ḡ does not contain any cycles, i.e. it is a tree
(or a forest, if the network is unconnected). Denote by T (N ) the class of (undirected) tree
graphs with vertex set N . Then a tree Ḡ ∈ T (N ) is defined by the conditions (i) that it is
connected, and (ii) |E(Ḡ)| = |N | − 1 for all Ḡ ∈ T (N ). When Ḡ ∈ T (N ), the payoff of an
agent i ∈ N can be written as

πi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

(dG(j)− 1) +O(δ3)− cd+G(i).

It follows that the linking incentive function of agent i takes the form

fi(G, j) = δ(1− δ)− c+ δ2dG(j) +O(δ3).

The link incentive function satisfies condition (LM) for δ(1−δ) > c and condition (LD) with
g(x) = x and γ = 2, because fi(G, j) − fi(G, k) = δ2(dG(j) − dG(k)) + O(δ3). Aggregate

32See also Jackson & Wolinsky (1996) for a similar payoff structure.
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payoff Π(G, δ) =
∑

i∈N πi(G, δ) is then given by

Π(G, δ) = n+ δ(1− δ)
∑

i∈N

dG(i) + δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= n+ (2δ(1− δ)− c)(n− 1) +
4δ2

n
(n− 1)2 + nδ2σ2

d(G) +O(δ3),

where e(Ḡ) is the number of edges in Ḡ, n = |N |, and we have used the fact that for
Ḡ ∈ T (N ) the number of edges is e(Ḡ) = n− 1. It follows that for small δ such that terms
of the order O(δ3) become negligible, maximizing aggregate payoffs becomes equivalent to
maximizing the degree variance . Hence, Condition (DC) holds for aggregate payoff when
Ḡ ∈ T [N ].33

A.3. Public Goods Provision

The following network game is presented in Goyal & Joshi (2006) as an extension of Bloch
(1997). An (undirected) link between two agents represents an agreement to share knowledge
about the production of a public good. Each agent can decide how much to invest into the
public good. Denote the level of contribution of agent i ∈ N = {1, . . . , n} as xi ∈ R+. The

production technology of every agent is assumed to be ci(xi, G) = 1
2

(
xi

dG(i)+1

)2

. The payoff

function πi : R
n
+ × G(n) → R of agent i is

πi(x, G) ≡
∑

j∈N

xj −
1

2

(
xi

dG(i) + 1

)2

.

The Nash contribution of agent i is x∗
i = (dG(i)+1)2. This optimal choice of an agent induces

naturally preferences over networks by inserting the value of xi(G) into the payoff function
πi. This gives us

πi(G) ≡ πi(x
∗, G) =

1

2
(dG(i) + 1)2 +

∑

j∈N\{i}

(dG(j) + 1)2.

With this payoff function, the linking incentive function for an agent i is given by

fi(G, j) =
9

2
+ 2dG(j).

33We will see in the network growth model introduced in Section 2.2 that Ḡ ∈ T [N ] is always guaranteed
to hold if we allow an entering agent to form only a single link.
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This obviously satisfies conditions (LM) and (LD) with g(x) = 2x and γ = 0. Aggregate
payoff Π(G) =

∑

i∈N πi(G) is then given by

Π(G) =
1

2

∑

i∈N

(dG(i) + 1)2 +
∑

i∈N

∑

j∈N\{i}

(dG(j) + 1)2

=
n(2n− 1)

2
+ 2(2n− 1)

(

1 +
δ2

n
e(Ḡ)

)

e(Ḡ) +
n(2n− 1)δ2

2
σ2
d(G).

We see that aggregate payoffs are increasing in the degree variance and condition (DC) holds.

A.4. A Linear-Quadratic Complementarity Game

We consider a simplified form of the game introduced by Ballester et al. (2006) where each
agent i ∈ N in the network G selects an effort level xi ≥ 0, x ∈ R

n
+ (e.g. the R&D investment

of a firm or the working hours of an inventor), and receives a payoff πi : R
n
+×G(n)×R+ → R

of the following form

(A.2) πi(x, G, δ) ≡ xi −
1

2
x2
i + δ

n∑

j=1

aijxixj,

where δ ≥ 0 and aij ∈ {0, 1}, i, j ∈ N = {1, . . . , n} are the elements of the symmetric n× n
adjacency matrix A of Ḡ. This payoff function is additively separable in the idiosyncratic
effort component (xi−

1
2
x2
i ) and the peer effect contribution (δ

∑n
j=1 aijxixj). Payoffs display

strategic complementarities in effort levels, i.e., ∂2πi(x,G,δ)
∂xi∂xj

= δaij ≥ 0. Ballester et al. (2006)

have shown that if δ < 1/λPF(G) then the unique interior Nash equilibrium solution of
the simultaneous n–player move game with payoffs given by Equation (A.2) and strategy
space R

n
+ is given by the Bonacich centrality x∗

i = bi(G, δ) for all i ∈ N (Bonacich, 1987).34

Moreover, the payoff of agent i in equilibrium is given by

(A.3) πi(G, δ) ≡ πi(x
∗, G, δ) =

1

2
(x∗

i )
2 =

1

2
b2i (G, δ).

In the case of small complementarity effects, corresponding to small values of δ, the

34Let λPF(G) be the largest real (Perron-Frobenius) eigenvalue of the adjacency matrixA of the undirected
network Ḡ. If I denotes the n×n identity matrix and u ≡ (1, . . . , 1)⊤ the n-dimensional vector of ones then
we can define the Bonacich centrality as follows: If and only if δ < 1/λPF(G) then the matrix B(G, δ) ≡

(I− δA)
−1

=
∑∞

k=0 δ
k
A

k exists, is non-negative (see e.g. Debreu & Herstein, 1953), and the vector of
Bonacich centralities is defined as b(G, δ) ≡ B(G, δ) · u. We can write the vector of Bonacich centralities
as b(G, δ) =

∑∞

k=0 δ
k
A

k · u = (I − δA)−1 · u. For the components bi(G, δ), i = 1, . . . , n, we get bi(G, δ) =
∑∞

k=0 δ
k(Ak · u)i =

∑∞

k=0 δ
k
∑n

j=1

(
A

k
)

ij
, where

(
A

k
)

ij
is the ij-th entry of Ak. Because

∑n
j=1

(
A

k
)

ij
is

the number of all (undirected) walks of length k in Ḡ starting from i, bi(G, δ) is the number of all walks in
Ḡ starting from i, where the walks of length k are weighted by their geometrically decaying factor δk.
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Bonacich centrality of an agent i can be written as

bi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

dG(j) +O(δ3).

Note that equilibrium payoff can be written as

πi(G, δ) =
1

2
+ δdG(i) +

δ2

2
dG(i)

2 + δ2
∑

j∈NG(i)

dG(j) +O(δ3),

and the link incentive function is then given by

fi(G, j) =
δ(2 + δ)

2
+

δ2

2
dG(i)(dG(i) + 1) + δ2dG(j) +O(δ3).

If we neglect terms of the order O(δ3) then the linking incentive function also satisfies
condition (LM). Further, fi(G, j) − fi(G, k) = δ2(dG(j) − dG(k)) + O(δ3) so that condition
(LD) holds with g(x) = x and γ = 2. Aggregate payoff Π(G, δ) =

∑

i∈N πi(G, δ) can be
written as

Π(G, δ) =
n

2
+ δ

n∑

i=1

dG(i) +
δ2

2

n∑

i=1

dG(i)
2 + δ2

n∑

i=1

∑

j∈NG(i)

dG(j) +O(δ3)

=
n

2
+ 2δ

(

1 +
3δ

n
e(Ḡ)

)

e(Ḡ) +
3nδ2

2
σ2
d(G) +O(δ3).

Aggregate payoff is increasing in the degree variance, and hence, condition (DC) holds.

APPENDIX B: PROOFS

In this appendix the proofs of the propositions, corollaries and lemmas stated in the paper
are provided.

B.1. Quasi-Stars

Proof of Proposition 1: We first give a proof for part (i) of the proposition. For each
agent j ∈ St let the best response of the entrant t be the set-valued map Bt : Nt → Nt given
by

Bt(St) ≡ argmaxk∈St
ft(Gt−1, k) = argmaxk∈St

dGt−1(k).

Then, in the limit β → ∞, we obtain from Equation (2.4) that

lim
β→∞

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
1

|Bt(St)|
1Bt(St)(j).
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Hence, the entrant makes a uniform draw without replacement from the best response set
Bt when deciding with whom to form a link with probability one, and the probability that
an agent j receives a link by the entrant is given by

lim
β→∞

Kβ
t (j|Gt−1,St) =

(

1−

(

1−
1

|Bt(St)|

)

. . .

(

1−
1

|Bt(St)| −m+ 1

))

1Bt(St)(j)

=

(

1−
|Bt(St)| −m

|Bt(St)|

)

1Bt(St)(j) =
m

|Bt(St)|
1Bt(St)(j).

We now give a proof by induction for (Gt)
T
t=m+2 and an arbitrary value of ns ≥ 1. The

induction basis adds one agent at time t = m+ 2 to the complete graph Km+1. By drawing
a random sample St after selecting ns agents from Km+1 uniformly at random, the entrant
observes all agents in the set [m+ 1] ≡ {1, 2, . . . ,m+ 1}. All of them have the same degree.
Therefore, the entrant forms links to m of the agents in [m+1] uniformly at random, and we
obtain a quasi-star Sm

m+2 with probability one. W.l.o.g. we can label the nodes that receive
these links from 1 to m. Similarly, at time t = m + 3, by sampling ns agents in Sm

m+2, the
entrant always observes the set of agents [m]. These agents have maximal degree in the
prevailing network and hence obtain all the m links. It follows that we obtain the quasi-star
Sm
m+3 with probability one.

In the following we consider the induction step. The induction hypothesis is that the
network Gt−1 is a quasi-star, with the highest degree agents in the set [m]. After sampling
ns nodes uniformly at random, it must hold that [m] ⊆ St with probability one. The reason
is the following: Either one of the agents in [m] is observed directly. Since each of them has
an outgoing link to all other agents in [m], they all enter the sample St. Otherwise, if one
of the agents not in [m] is observed directly, we know from the definition of the quasi-star
that such an agent has outgoing links to all the agents in [m], and therefore, they all enter
the sample St. The agents in [m] are the ones with the highest degree in Gt−1 and so they
receive all the m links. It follows that the network Gt must be a quasi-star. Hence, for all
ns ≥ 1 and T > m+1, we must have that in the limit of β → ∞, Gβ

T ∈ Σm+1
T , almost surely.

Next, we consider part (ii) of the proposition. In the limit of strong shocks, as β → 0, we
obtain from Equation (2.4) that

lim
β→0

Pt

(

ft(Gt−1, j) + εtj = max
k∈St

ft(Gt−1, k) + εtk

)

=
1

|St|
.

It follows that the entrant selects m agents uniformly without replacement from the sample
St with probability one as β → 0. The probability that an agent j receives a link by the
entrant is then given by

lim
β→0

Kβ
t (j|Gt−1,St) =

m

|St|
1St

(j).

Let us consider the sequence (Gt)
T
t=m+2 with ns ≥ 1 and assume that Gt−1 ∈ Σm

t−1. We are
interested in the probability Pt(Gt ∈ Σm

t |Gt−1 ∈ Σm
t−1). We have that Gt ∈ Σm

t if only the
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t

m

...
...

t−m− 1

|St| X0 X1

m+ 1 ns 0
m+ 2 ns − 1 1
m+ 3 ns − 2 2

...
...

...
m+ 1 + ns 0 ns

Figure 7.— (Left panel) Illustration of the selection of agents in a quasi-star by the
entrant t. The filled circles indicate the nodes present in the initial complete graph Km+1.
(Right panel)X0 denotes the number of agents drawn from the set [m+1] and X1 the number
of agents drawn from the remaining agents in the set [t − 1]\[m + 1]. The table shows the
possible values for |St|, X0 and X1.

m agents in the set [m] receive a link by the entrant at time t. Given the sample St, the
probability of this to happen is

(B.1)
m

|St|

(
m− 1

|St| − 1

)

. . .

(
1

|St| −m+ 1

)

=
m!|(St| −m)!

|St|!
=

(
|St|

m

)−1

.

Consequently, we then can write

(B.2) Pt(Gt ∈ Σm
t |Gt−1 ∈ Σm

t−1) =
∑

St∈Pt−1

(
|St|

m

)−1

Pt(St|Gt−1 ∈ Σm
t−1).

Due to the properties of the quasi-star Gt−1 ∈ Σm
t−1, the sample can only be of size |St| =

m + 1,m + 2, . . . ,m + 1 + ns. The sample St has size m + 1 if all the ns draws are from
the m+ 1 nodes in the set [m+ 1] that are in the initial complete graph Km+1. It is of size
m + 2 if ns − 1 draws are from the set [m + 1], and one agent is drawn from the remaining
agents. And so on. An illustration can be seen in Figure 7. Let X0 denote the number of
agents drawn from the set [m+1] and X1 be the number of agents drawn from the remaining
agents in the set [t − 1]\[m + 1]. Then X0 follows a hypergeometric distribution, and the
sample size distribution is given by

Pt(|St| = m+ 1 + k|·) = Pt(X0 = ns − k,X1 = k|·) =

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

) .
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The expected sample size is

Et[|St||·] =
ns∑

k=0

(m+ 1 + k)Pt(|St| = m+ 1 + k|·) = (m+ 1 + k)

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

)

= ns +m+ 1−
ns(m+ 1)

t− 1
.

We thus find that the expected sample size is decreasing with ns. Moreover, we have that
the sample size distribution for ns + 1 first-order stochastically dominates the distribution
for ns. Let 0 ≤ l ≤ ns, then first-order stochastic dominance is implied by

l∑

k=0

(
m+1
ns−k

)(
t−m−2

k

)

(
t−1
ns

) ≥
l∑

k=0

(
m+1

ns+1−k

)(
t−m−2

k

)

(
t−1
ns+1

) ,

which is equivalent to

0 ≤
l∑

k=0

(
t− 2−m

k

)((m+1
ns−k

)

(
t−1
ns

) −

(
m+1

ns+1−k

)

(
t−1
ns+1

)

)

=
(l + 1)(ns − l −m− 2)

t(ns − l)−m(ns + 1)− 2(ns + 1)

(
t−m−2
l+1

)

(
t−1
ns

)(
t−1
ns+1

)

((
t− 1

ns

)(
m+ 1

ns − l

)

−

(
t− 1

ns + 1

)(
m+ 1

ns − l − 1

))

=
(l + 1)(ns − l −m− 2)

t(ns − l)−m(ns + 1)− 2(ns + 1)

(
t−m− 2

l + 1

)(

1 +
t− ns − 1

ns + 1

ns − l

ns − l −m− 2

) (m+1
ns−l

)

(
t−1
ns+1

)

=
l + 1

ns + 1

(
t−m−2
l+1

)(
m+1
ns−l

)

(
t−1
ns+1

)

The last expression is non-negative for all admissible parameter values. If one distribution is
first-order stochastically dominated by another, then the expected value of any decreas-
ing function of a random variable governed by the first distribution is higher than the
expectation under the latter (see e.g. Mas-Colell et al., 1995). Since Equation (B.1) is a
decreasing function of the sample size |St|, we can apply stochastic dominance and it fol-
lows that Equation (B.2) is decreasing with ns. The network Gt≤m+1 is the complete graph
Km+1 and therefore a quasi star. The probability of observing a quasi-star in period T is
given by P(GT ∈ Σm

T ) =
∏T

t=m+2 Pt(Gt ∈ Σm
t |Gt−1 ∈ Σm

t−1). As we have shown above,
the probability Pt(Gt ∈ Σm

t |Gt−1 ∈ Σm
t−1) is decreasing in ns for any t ≥ m + 2. Thus, if

β → 0, it follows that for a sequence (Gβ
t )

T
t=m+2 of networks generated under n

(1)
s , and a

sequence (Hβ
t )

T
t=m+2 of networks generated under n

(2)
s with n

(1)
s > n

(2)
s , we must have that

limβ→0 P(G
β
T ∈ Σm

T ) < limβ→0 P(H
β
T ∈ Σm

T ).

Q.E.D.
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B.2. The Degree Distributions

Let us review some notation we have introduced in the main part of the paper. For all t ≥ 1
we denote by Nt(k) ≡

∑t
i=0 1k(dGt

(i)) the number of nodes in the graph Gt with in-degree

k. The relative frequency of nodes with in-degree k is accordingly defined as P β
t (k) ≡

1
t
Nt(k)

for all t ≥ 1. The sequence {P β
t (k)}k∈N is the (empirical) degree distribution.

We will now derive a recursive system which can be used to describe the time evolution of
the expected degree distribution. Let Nt ≡ {Nt(k)}k≥0. Denoting by k = d−Gt−1

(j) we write

the attachment kernel as Kβ
t (j|Gt−1) =

a(k)
tζ(β,m)

+ o
(
1
t

)
. The expected number of nodes with

in-degree k at time t can increase by the creation of a link to a node with in-degree k − 1,
or it decreases by the creation of a link to a node with in-degree k. It then follows that

(B.3) E[Nt+1(k)|Nt] = Nt(k)

(

1−
a(k)

tζ(β,m)

)

+Nt(k − 1)
a(k − 1)

tζ(β,m)
+ δ0,k + o

(
1

t

)

.

Taking expectations on both sides of Equation (B.3), dividing by t + 1, and denoting by
P β
t (k) = E[Nt(k)], gives us

P β
t+1(k) =

t

t+ 1

[

P β
t (k)

(

1−
a(k)

tζ(β,m)

)

+ P β
t (k − 1)

a(k − 1)

tζ(β,m)
+

1

t
δ0,k

]

+ o

(
1

t

)

.

Some algebraic manipulations allow us to write this as

(B.4) P β
t+1(k)− P β

t (k) = bt(k)
[

ct(k)− P β
t (k)

]

+ o

(
1

t

)

,

where

bt(k) ≡
ζ(β,m) + a(k)

ζ(β,m)

1

t+ 1
, ct(k) ≡ P β

t (k−1)
a(k − 1)

ζ(β,m) + a(k)
+

ζ(β,m)

ζ(β,m) + a(k)
δ0,k.

The following lemma gives us a simple way to determine the asymptotic solution (i.e. as
t → ∞) of the recursion in Equation (B.4).

Lemma B.1 Let (xn), (yn), (ηn), (rn) denote real sequences such that

xn+1 − xn = ηn(yn − xn) + rn

and (i) limn→∞ yn = x, (ii) ηn > 0,
∑∞

n=1 ηn = ∞ and there exists a N0 such that for all
n ≥ N0 ηn < 1, and (iii) rn = o(ηn). Then limn→∞ xn = x.

Proof of Lemma B.1: See Jordan (2006), p. 229. Q.E.D.

For our purposes the lemma can be applied by identifying xt = P β
t (k), ηt = bt(k) and

yt = ct(k). We have that bt(k) > 0 and
∑

t≥0 bt(k) = ∞ since ζ(β,m) < ∞. Under this
condition it is evident that ct(k) has a well-defined limit, which is determined in a recursive
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way. We give a proof by induction. The induction basis follows from the case of k = 0 where

c(0) ≡ lim
t→∞

ct(0) =
ζ(β,m)

ζ(β,m) + a(0)
.

To proceed with the induction proof. Suppose we have already determined the lower tail of
the distribution c(0) = P β(0), . . . , c(k − 1) = P β(k − 1), k > 0. Then we see that

c(k) ≡ lim
t→∞

ct(k) = P β(k − 1)
a(k − 1)

ζ(β,m) + a(k)
,

and iterating this equation with respect to k, gives us

c(k) = P β(0)
k∏

j=1

a(j − 1)

ζ(β,m) + a(j)
,

Hence, we get for the explicit expression for the asymptotic degree distribution

(B.5) P β(k) =
ζ(β,m)

ζ(β,m) + a(0)

k∏

j=1

a(j − 1)

ζ(β,m) + a(j)
.

This general scheme can be used to determine the degree distribution for the different pa-
rameters we consider, as we show now in the following.

Proof of Proposition 2: For β → 0 the attachment kernel of Equation (3.1) is given

by Kβ
t (j|Gt−1) = a(k)

tζ(β,m)
+ o

(
1
t

)
, where k = dGt−1(j), a(k) = 1 + βk and ζ(β,m) = 1+βm

m
.

We then can apply Equation (B.5), noting that the product on the right-hand side admits a
closed-form representation in terms of Gamma functions as

(B.6) P β(k) =
1 + βm

1 +m(1 + β)

Γ
(

1
β
+ k
)

Γ
(

2 + 1+βm
βm

)

Γ
(

1
β

)

Γ
(

2 + 1+m
1+βm

+ k
) .
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By Stirling’s formula we can approximate the Gamma function for large k as35

(B.7)
Γ(k)

Γ(k + c)
= k−c

(

1 +O

(
1

k

))

.

For the tails of the degree distribution in Equation (B.6) this implies that P β(k) ∼ (1 +

βk)−(2+ 1
βm

)
(
1 +O

(
1
k

))
for large k. Q.E.D.

The case of β = 0 can be treated analogously.

Proof of Corollary 1: The degree distribution in Equation (3.4) follows from the at-

tachment kernel K0
t (j|Gt−1) = a(k)

tζ(β,m)
+ o

(
1
t

)
= m

t
+ o

(
1
t

)
and inserting a(k) = 1 and

ζ(β,m) = 1
m

into Equation (B.5). Q.E.D.

Similarly, we can derive the asymptotic degree distribution in Proposition 3 for β = 0
when the observation radius ns is small enough. The proof is given in the following.

Proof of Proposition 3: With the attachment kernel from Equation (3.6) given by

K0
t (j|Gt−1) = a(k)

tζ(β,m)
+ o

(
1
t

)
= m

m+1
1+k
t

+ o
(
1
t

)
, where k = dGt−1(j), a(k) = 1 + k and

ζ(β,m) = m+1
m

, we can apply Equation (B.5) to obtain

P (k) =
(1 +m)Γ

(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m
+ k
) , k ≥ 0.

Using Equation (B.7) we get P (k) ∼ k−(2+ 1
m) for large k. Q.E.D.

Finally, we can give an upper bound on the deviations for finite t and show that the
empirical degree distribution is a consistent estimator of the expected degree distribution in
the limit of large t.

35By Stirling’s formula we can approximate the Gamma function for large k as

Γ(k) =

√

2π

k

(
k

e

)k (

1 +O

(
1

k

))

.

Hence,

Γ(k)

Γ(k + a)
=

(

1 +O

(
1

k

))
√

(1 + a/k)(1 + a/k)−k

(
k

k + a

)k (
k + a

e

)−a

.

Since
√

(1 + a/k) → 1 for k → ∞ this term is asymptotically negligible. Additionally (1 + a/k)−k → e−a

for k → ∞, and (k+ a)−a ∼ k−a for k → ∞. Hence, the leading order approximation of the ratio of Gamma
functions is given by

Γ(k)

Γ(k + a)
= k−a

(

1 +O

(
1

k

))

.
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Proposition 9 Let the empirical in-degree distribution be given by {Pt(k)}k∈N. Then for
any ǫ > 0 we have that

(B.8) Pt(|Pt(k)− Et[Pt(k)]| ≥ ǫ) ≤ 2 exp

(

−
ǫ2t

8(m+ 1)2

)

,

and Pt(k) converges in probability to Et[Pt(k)] for large t.

Proof of Proposition 9: Let the number of vertices with in-degree k in network Gt =
〈Nt, Et〉 be denoted by Nt(k) =

∑

i∈Nt
1d−

Gt−1
(i)(k) = |Nt|Pt(k). Consider the filtration Fn =

σ(G1, G2, . . . , Gn), 1 ≤ n ≤ t, which is the smallest σ-algebra generated by G1, G2, . . . , Gn,
with the property that Fn ⊆ Fn+1, and let F∞ be the σ-algebra generated by the infinite
union of the Fn’s. For n = 1, . . . , s, we denote the conditional expectation of the number of
vertices with in-degree k at time s, conditional on the filtration Fn, by Zn = Et[Nt(k)|Fn].
First, from the fact that Nt(k) ≤ t, it follows that Et[|Zn|] = Et[Zn] = Et[Nt(k)] ≤
t < ∞. Secondly, since Fn ⊆ Fn+1, we have that for all n ≤ t − 1, Et[Zn+1|Fn] =
Et[Et[Nt(k)|Fn+1]|Fn] = Et[Nt(k)|Fn] = Zn. We thus find that (Zn)

t
n=1 is a martingale

with respect to (Fn)
t
n=1.

Moreover, note that Z1 = Et[Nt(k)|F1] = Et[Nt(k)|G1], since F1 contains no more infor-
mation than the initial network G1. Zt is given by Zt = Et[Nt(k)|Ft] = Nt(k). Therefore,
we have that Zt − Z1 = Nt(k)− Et[Nt(k)|G1]. Next, we show that |Zn − Zn−1| ≤ 2(m + 1).
To see this note that Zn = Et[Nt(k)|Fn] =

∑

i∈Nt
Pt(dGt−1(i) = k|Fn) and similarly Zn−1 =

Et[Nt(k)|Fn−1] =
∑

i∈Ns
Pt(dGt−1(i) = k|Fn−1), so that we can write

(B.9) Zn − Zn−1 =
∑

i∈Nt

[
Pt(dGt−1(i) = k|Fn)− Pt(dGt−1(i) = k|Fn−1)

]
.

In Fn−1 we know where the edges up to time n − 1 have been attached to. In Fn we know
in addition where the edges in the n-th step are attached to. These edges affect the total
degree of m+ 1 vertices, namely the ones receiving a link and the one initiating the links.
For the conditional expectation given Fn, we need to take the expectation over all possible

ways of attaching the remaining edges in the periods n + 1, . . . , s. Only the distribution of
the degrees of the vertices that have obtained or initiated an edge in the period n are affected
by the knowledge of Fn, compared to the knowledge of Fn−1. Neither the probability of the
other vertices to receive a link nor the probability to initiate a link is affected by the creation
of the edges in the n-th step. Thus, also the law of their total degree is unaffected. There are
at most m+ 1 vertices that receive or initiate a link in period n. Therefore, Equation (B.9)
shows that the distribution of at most 2(m+1) vertices in Gt is different by conditioning on
Fn compared to conditioning on Fn−1. This implies that |Zn − Zn−1| ≤ 2(m + 1). We then
can apply the Azuma-Hoeffding inequality (see e.g. Grimmett & Stirzaker, 2001) to obtain
for any η > 0

Pt(|Nt(k)− Et[Nt(k)|G1]| ≥ η) ≤ 2 exp

(

−
η2

8(m+ 1)2t

)

,
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and by choosing η = ǫt Equation (B.8) follows. Q.E.D.

With Proposition 9 we are now able to show almost sure convergence of the empirical
degree distribution to its expected value.

Proposition 10 For a fixed k ≥ 0, Pt(k)
a.s.
−−→ Et [Pt(k)], as t → ∞.

Proof of Proposition 10: The proof follows from the Borel-Cantelli lemma (see e.g.
Grimmett & Stirzaker, 2001) and Proposition 9 by observing that for any ǫ > 0

∞∑

t=1

Pt(|Pt(k)− Et[Pt(k)]| ≥ ǫ) ≤ 2
∞∑

t=1

e
− ǫ2t

8(m+1)2 =
1

e
ǫ2

8(m+1)2 − 1
< +∞.

Q.E.D.

B.3. Efficiency

Proof of Proposition 4: Part (i) of the proposition is a direct consequence of part (ii)
of Proposition 1.
Part (ii) of the proposition follows from the fact that networks generated under (Ht)

T
t=m+2

have a finite degree variance while the degree variance of networks generated under (Gt)
T
t=m+2

diverge with T , since the first has a geometric degree distribution while the latter has a power-
law degree distribution in the large T limit. More precisely, the degree variance under HT is
given by

σ2
d = lim

T→∞

T∑

k=0

1

1 +m

(
m

m+ 1

)k

(k −m)2 = m(m+ 1) < +∞,

while the variance under GT is

σ2
d = lim

T→∞

T∑

k=0

(m+ 1)Γ
(
3 + 1

m

)
Γ(k + 1)

(1 + 2m)Γ
(
3 + 1

m
+ k
) (k −m)2 = lim

T→∞
O(T 1− 1

m ) = +∞,

if m > 1, while for m = 1 we get

σ2
d = lim

T→∞

(

4HT+1 −
4(1 + T )(5 + 3T )

6 + 5T + T 2

)

= +∞,

where HT is the Harmonic number, diverging as lnT for large T . Q.E.D.

B.4. Higher Order Statistics

The results of this section are derived using a continuum approximation in which both time
and degree are treated as continuous variables in R+ (see Dorogovtsev & Mendes, 2003, pp.

50



117). In this continuum approach, the probability that a vertex s has in-degree d−Gt
(s) = k

at time t is given by δ(k− k̄(s, t)), where k̄(s, t) = Et[d
−
Gt
(s)] denotes the expected degree of

vertex s at time t. The degree distribution can then be obtained from

(B.10) Pt(k) =
1

t

∫ t

0

δ(k − k̄(s, t))ds = −
1

t

(
∂k̄(s, t)

∂s

)−1
∣
∣
∣
∣
∣
s=s(k,t)

.

In order to compare this approximation with our previous analysis, we will derive the degree
distributions in the case of a large and small observation radius. To ease the notation we will
denote by ks(t) the in-degree d

−
Gt
(s) of a vertex s at time t for the remainder of this section,

and we will focus only on the in-degree ks(t), since it uniquely determines the total degree
dGt

(s) = ks(t) +m, and vice versa.

We first consider the expected change in the in-degree ks(t) of a vertex s receiving a
link from an entrant t when St = Pt−1 (large observation radius). In the continuum ap-
proximation, the corresponding expectation in the time interval [t, t + ∆t) is given by

Et[ks(t + ∆t) − ks(t)|Gt] ≈ m
1+βm

1+βks(t)
t

∆t for large t, where Equation (3.1) describes a

transition rate, and ∆t = O (1/T ). The evolution of the in-degree of vertex s at time t is
governed by the following differential equation

dks(t)

dt
= lim

∆t↓0

Et[ks(t+∆t)− ks(t)|Gt]

∆t
=

m

1 + βm

1 + βks(t)

t
,

with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

(B.11) ks(t) =
1

β

((
t

s

) mβ

1+mβ

− 1

)

,

From Equation (B.10) we then get

(B.12) P β(k) =
1 + βm

m
(1 + βk)−(2+ 1

βm
),

with
∫∞

0
P β(k)dk = 1. This is asymptotically equivalent to the degree distribution we have

obtained in Equation (3.2).

Similarly, in the case of ns small enough (small observation radius), we have from Equation

(3.6) that Et[ks(t + ∆t) − ks(t)|Gt] ≈
m

1+m
1+ks(t)

t
∆t for large t. The time evolution of the

in-degree of a vertex s can then be written as

dks(t)

dt
=

m

m+ 1

ks(t) + 1

t
,
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with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

(B.13) ks(t) =

(
t

s

) m
m+1

− 1,

From Equation (B.10) we then get

(B.14) P (k) =
m+ 1

m
(1 + k)−(2+

1
m),

with the property that
∫∞

0
P (k)dk = 1. Comparing this distribution with the one in Equation

(3.7) shows that they are both asymptotically equivalent. Since the continuum approximation
delivers only meaningful results in the large t limit, we will consider only the leading order
terms in O(1

t
) in our derivations in the following sections.

B.4.1. Average Nearest Neighbor Degree Distribution

Proof of Proposition 5: Let R−
s (t) denote the sum of in-degrees of the in-neighbors of

a vertex s at time t, that is R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). In the continuum approximation, with

the attachment kernel from Equation (3.1), we have up to leading orders in O
(
1
t

)
that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

m
1 + βkj(t)

(1 + βm)t
=

a

t
R−

s (t) +
a

βt
kj(t) =

a

t
R−

s (t) +
a

β2t

((
t

s

)a

− 1

)

,

where we have denoted by a = mβ
1+mβ

. Wit the initial condition R−
s (s) = 0 we obtain

(B.15) R−
s (t) =

1

β2

(

1 +

(

a ln

(
t

s

)

− 1

)(
t

s

)a)

,

and the average nearest neighbor in-degree is given by k−
nn(ks) =

R−

s (t)
ks

. From Equation (B.11)

we know that t
s
= (1 + βks)

1
a , and we obtain

k−
nn(k) =

1

β2k
(1 + (ln(1 + βk)− 1) (1 + βk)) .

Next, we turn to the analysis of the average nearest out-neighbor in-degree. Let us denote
by R+

s (t) the sum of the in-degrees of the out-neighbors of vertex s at time t, that is R+
s (t) =∑

j∈N+
Gt

(s) kj(t). Up to leading orders in O
(
1
t

)
we can write

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t

(
1

β
+ kj(t)

)

=
a

t

(
m

β
+R+

s (t)

)

.
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The solution is given by

(B.16) R+
s (t) = −

m

β
+ Cst

a,

where the constant Cs is determined by the initial conditions. They are given by

R+
s+1 =

s∑

j=1

a

s

(
1

β
+ kj(s)

)

(kj(s) + 1) =
a

β2

(
β(1 +m(β − 1))− 1 + s2a−1ζ(s, 2a)

)
,

where ζ(s, 2a) ≡
∑∞

j=0
1

(2a+j)s
is the Hurwitz zeta function. Together with the solution Equa-

tion (B.16) we then get

(B.17) R+
s (t) =

1

β2

((

βm(1 + p(β − 1)) +
a

s
s2aH(s, 2a)

)( t

s+ 1

)a

−mβ

)

.

The average nearest out-neighbor in-degree is then given by k+
nn(k) =

R+
s

m
. Q.E.D.

Proof of Proposition 6: Let R−
s (t) denote the sum of in-degrees of the in-neighbors of

a vertex s at time t, that is R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). In the continuum approximation, with

the attachment kernel from Equation (3.6), we have up to leading orders in O
(
1
t

)
that36

dR−
s (t)

dt
=

a

t

∑

j∈N−

Gt
(s)

(1 + kj(t)) =
a

t
ks(t) +

a

t
R−

s (t),

where we have denoted by a = m
1+m

. In the continuum approximation we have that ks(t) =
(
t
s

)a
− 1 (see Equation (B.13)), so that we can write

dR−
s (t)

dt
=

a

t

((
t

s

)a

− 1 +
a

t
R−

s (t)

)

.

The solution is given by

R−
s (t) = Cst

a + 1 + a

(
t

s

)a

ln t,

where the constant Cs is determined by the initial conditions, given by R−
s (s) = 0. With this

initial conditions we get

R−
s (t) = 1−

(
t

s

)a

+ a

(
t

s

)a

ln

(
t

s

)

.

36We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed
vertices (other than s), which happens with probability O

(
1
t2

)
.
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Further, using the fact that s(k, t) = t

(k+1)
1
a
we obtain

R−
s (t) = 1 + (k + 1) (ln(k + 1)− 1) .

It follows that

k−
nn =

R−
s

k
=

1

k
(1 + (k + 1) (ln(k + 1)− 1)) .

Next, we turn to the average nearest out-neighbor in-degree. Let us denote by R+
s (t)

the sum of the in-degrees of the out-neighbors of vertex s at time t, that is R+
s (t) =

∑

j∈N+
Gt

(s) kj(t). In order to compute the expected increase in the sum of the degrees of

the out-neighbors of s we need to consider two different cases. First, s is observed directly
and enters the sample St together with all the out-neighbors. The expected number of links
created among the out-neighbors of s in this way is given by

ns

t

m∑

k=1

k

(
m
k

)(
|St|−m
m−k

)

(
|St|
m

) =
m2

(m+ 1)t
,

where we have used the fact that |St| = ns(m+1) up to leading orders in O
(
1
t

)
. Second, we

need to consider the cases where the out-neighbors of s are found either directly or indirectly
through other vertices than s. The probability of this is given by m

(m+1)t
kj(t) for each j in

N+
Gt
(s) (discounting the link from s) Taking these cases together and denoting by a = m

m+1
,

we can write

dR+
s (t)

dt
=

ma

t
+

∑

j∈N+
Gt

(s)

a

t
kj(t) =

ma

t
+

a

t
R+

s (t),

with the solution

R+
s (t) = −m+ Cst

a.

Cs is determined by the initial condition R+
s (s), which is given by

R+
s (s) =

a

s

s∑

j=1

(1 + kj(s))
2 = as2a−1H(s, 2a),

where H(s, 2a) ≡
∑s

j=1 j
−2a is the generalized Harmonic number. Inserting the initial con-

dition delivers

R+
s (t) = m

((
t

s

)a

− 1

)

+ aH(s, 2a)sa−1ta.
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t

s

u ∈ N+
Gt
(s)

t

s

u ∈ N−
Gt
(s)

Figure 8.— (Left panel) Vertex s and one of its out-neighbors u ∈ N+
Gt
(s) receive a link

bei the entrant t. (Right panel) Vertex s and one of its in-neighbors u ∈ N−
Gt
(s) receive a

link.

Further, using s(k, t) = t

(k+1)
1
a
from Equation (B.13) gives

R+
s (k) =

(

mΓ(2 +m)2

Γ
(
1 +m+ m

m+1

)2 +
m

m+ 1
ζ

(
2m

m+ 1
, 2 +m

))

t
m−1
m+1 (1 + k)

1
m .

With k+
nn(k) =

R+
s (k)
m

we then get Equation (5.4). Q.E.D.

B.4.2. Clustering Degree Distribution

We denote by Ms(t) the number of links between neighbors of vertex s at time t in the
closure Ḡt. The clustering coefficient of vertex s can then be written as

Cs(t) =
2Ms(t)

(ks(t) +m)(ks(t) +m− 1)

In the following we derive the clustering coefficient for different observation radii. In the case
of a large observation radius we can give the following proof.

Proof of Proposition 7: Ms(t) can increase at time t only through the addition of an
edge to s and one of its neighbors. There are two possible cases to consider: (i) vertex s
and one of its out-neighbors u ∈ N+

Gt
(s) receive a link, or (ii) s and one of its in-neighbors

u ∈ N−
Gt
(s) receive a link. This is illustrated in Figure 8. The probability associated with

case (i) up to leading orders in O
(
1
t

)
is given by

m(1 + βks(t))

(1 + βm)t

∑

j∈N+
Gt

(s)

(m− 1)(1 + βkj(t))

(1 + βm)t
=

m(m− 1)(1 + βks(t))

(1 + βm)2t2
(
m+ βR+

s (t)
)
.
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Similarly, the probability associated with case (ii) up to leading orders in O
(
1
t

)
is given by

m(1 + βks(t))

(1 + βm)t

∑

j∈N−

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βm)t
=

m(m− 1)(1 + βks(t))

(1 + βm)2t2
(
ks(t) + βR−

s (t)
)
.

With R−
s and R+

s given by Equations (5.1) and (5.2), respectively, we obtain

dMs(t)

dt
=

m(m− 1)(1 + βks(t))

(1 + βm)t2
(m+ ks(t) + β(R+

s +R−
s ))

=
a2

t2
m− 1

mβ3

(

(
β2m+ as2a−1H(s, 2a)

)
(
t

s

)a(
t

s+ 1

)a

+

(
t

s

)2a

a ln

(
t

s

)a
)

.(B.18)

The initial condition Ms is determined by all connected pairs of vertices i, j which both
obtain a link from the entering vertex s at time s. Taking into account that all vertices with
i ≤ m are connected while the vertices i, j introduced later in the network are connected
only if either i has formed a link to j or j to i (depending on who has entered the network
first, and noting that all vertices with indices 1 ≤ i ≤ m are initially connected), we can
write the initial condition as follows37

Ms+1 =
m(m− 1)

2

s∑

j 6=i

1 + βki(s)

(1 + βm)s

1 + βkj(s)

(1 + βm)s
(Θ(m+ 1− i)Θ(m+ 1− j)

+Θ(i− j)Θ(j −m)m
1 + βkj(i)

(1 + βm)(i− 1)
+ Θ(j − i)Θ(i−m)m

1 + βki(j)

(1 + βm)(j − 1)

)

=
m(m− 1)s2a−2

(1 + βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + βm

s∑

i=m+1

1

i2a

∑

j=i+1

1

j − 1

)

,(B.19)

where we have denoted by a = βm
1+βm

. Combining the initial condition in Equation (B.19)

with Equation (B.18) yields Equation (5.5). Q.E.D.

Next, we turn to the derivation of the clustering coefficient when the observation radius
is small.

Proof of Proposition 8: For the increase of Ms(t) at time t we have to consider the
following cases: (i) vertex s and one of its out-neighbors u ∈ N+

Gt
(s) receive a link, or (ii) s and

one of its in-neighbors ∈ N−
Gt
(s) receive a link, and (iii) the entrant observes a vertex v and

forms a link to both vertices s and u which are both out-neighbors of v. This is illustrated in
Figure 9. In case (i) we consider that vertex s is observed directly. The probability of this to
happen is given by ns

t
. Assuming that s has been observed directly, s and all the out-neighbors

N+
Gt
(s) of s are in the sample St. We can then partition the sample St in three subsets: {s},

N+
Gt
(s) and St\(N

+
Gt
(s)∪ {s}), with corresponding cardinalities |{s}| = 1, |N+

Gt
(s)| = m and

37The Heaviside step function is defined as Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0.

56



t

s

u ∈ N+
Gt
(s)

t

u

s

∈ N−
Gt
(s)

N+
Gt
(u) ∋

t

v

us ∈ N+
Gt
(s),N+

Gt
(v)N+

Gt
(v) ∋

Figure 9.— (Left panel) Vertex s and one of its out-neighbors u ∈ N+
Gt
(s) receive a

link. (Middle) Vertex s and one of its in-neighbors u ∈ N−
Gt
(s) receive a link. (Right panel)

The entrant t observes a vertex v and forms a link to both vertices s and u which are both
out-neighbors of v.

|St\(N
+
Gt
(s)∪{s})| = ns(m+1)−(m+1). We need to take into account all cases where vertex

s and at least one of the out-neighbors of s receive a link. The expected number of triangles
formed in this way can then be computed with a trivariate hypergeometric distribution as
follows

ns

t

m−1∑

k=1

k

(
1
1

)(
m
k

)(
|St|−(m+1)
m−(k+1)

)

(
|St|
m

) =
ns

t

m−1∑

k=1

k

(
m
k

)(
(ns−1)(m+1)
m−(k+1)

)

(
ns(m+1)

m

) =
m2(m− 1)

(m+ 1)(ns(m+ 1)− 1)t
.

In case (ii) we consider that one of the in-neighbors u ∈ N−
Gt
(s) of s is observed directly by

the entrant, which happens with probability ns

t
, and both u and s receive a link. The latter

event follows a bivariate hypergeometric distribution where two nodes are drawn from the
set {s, u} and m − 2 are drawn from the remaining nodes in the set St\{s, u} with a total
of m draws. Summing over all ks(t) in-neighbors of s, delivers the total probability measure
associated with case (ii) as given by

ks(t)
ns

t

(
2
2

)(
|St|−2
m−2

)

(
|St|
m

) =
ks(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

Next, in (iii) we need to consider all cases where a node v is observed directly by the entrant
and the two out-neighbors s and u, which have a link between them, both receive a link.
Similar to case (ii) we can then partition the set St in the subset {s, u} and the set of
remaining nodes St\{s, u}. The probability of both s and u receiving a link by the entrant
follows a bivariate hypergeometric distribution as

(
2
2

)(
|St|−2
m−2

)
/
(
|St|
m

)
. The probability that node

v is observed directly is ns

t
. The number of such triangles including node s is given by Ms(t)

(in both Gt and its closure Ḡt). The expected number of triangles being formed in this way
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is then given as follows

Ms(t)
ns

t

(
2
2

)(
|St|−2
m−2

)

(
|St|
m

) =
Ms(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

Taking together the cases (i)-(iii), we can write in the continuum approximation for the
dynamics of Ms(t)

dMs(t)

dt
=

a(m− 1)

t(ns(m+ 1)− 1)
(a(m+ 1) + ks(t) +Ms(t))

=
a(m− 1)

t(ns(m+ 1)− 1)

(

a(m+ 1)− 1 +

(
t

s

)a

+Ms(t)

)

,

where we have denoted by a = m
m+1

and used the fact that ks(t) =
(
t
s

)a
−1 in the continuum

approximation in Equation (B.13). Further denoting by b = a(m−1)
ns(m+1)−1

we can write this as

(B.20)
dMs(t)

dt
=

b

t

(

m− 1 +

(
t

s

)a

+Ms(t)

)

.

The general solution of Equation (B.20) is given by

Ms(t) =
1

a− b

(

(b− a)(m− 1) + b

(
t

s

)a

+ (a(m− 1)− bm+ (a− b)Ms(s))

(
t

s

)b
)

.(B.21)

From Equation (B.21) we can obtain an upper and a lower bound for the number of triangles
involving node s, i.e. M s(t) ≤ Ms(t) ≤ M s(t), by noting that 0 ≤ Ms(s) ≤

(
m
2

)
. For the

lower bound we set Ms(s) = 0 and obtain

M s(t) =
a(m− 1)

((
t
s

)b
− 1
)

+ b
(

m− 1 +
(
t
s

)a
−m

(
t
s

)b
)

a− b
.

Similarly, for the upper bound we set Ms(s) =
(
m
2

)
. Then we get

M s(t) =
2a(1−m) + (a (m(m+ 1)− 2)− bm(m+ 1))

(
t
s

)b
+ 2b

(
m− 1 +

(
t
s

)a)

2(a− b)
.

From Equation (B.13) we know that s = t(1 + k)−
1
a . Inserting this into M s(t) and M s(t)

and using the fact that C(k) = 2Mk

(k+m)(k+m−1)
allows us to bound the clustering coefficient as
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C(k) ≤ C(k) ≤ C(k), where

C(k) =
2bk + 2(a(m− 1)− bm)

(

(1 + k)
b
a − 1

)

(a− b)(k +m)(k +m− 1)
,

and

C(k) =
2a(m− 1) + 2b(k +m) + (a (m(m+ 1)− 2)− bm(1 +m)) (1 + k)

b
a

(a− b)(k +m)(k +m− 1)
.

For large k, these bounds decay as O
(
1
k

)
. Further, their difference is given by

C(k)− C(k) =
2b(1 + k)m− (1 + k)

b
am(b(m+ 1)− a(m− 1))

(a− b)(k +m− 1)(k +m)
,

with the property that limk→∞C(k)− C(k) = 0, showing that also C(k) = O
(
1
k

)
.

Q.E.D.

APPENDIX C: THE LF-MCMC ALGORITHM

The purpose of the likelihood-free Markov chain Monte Carlo (LF-MCMC) algorithm is to
estimate the parameter vector Θ ≡ (β, p, ns,m)1×L, L = 4, of the model on the basis of the
summary statistics S ≡ (S1, . . . ,SK)T×K , K = 4, where S1 ≡ (P (k))T−1

k=0 , S2 ≡ (C(k))T−1
k=0 ,

S3 ≡ (knn(k))
T−1
k=0 and S4 ≡ (P (s))Ts=1. The algorithm generates a Markov chain which

is a sequence of parameters (Θs)
n
s=1 with a stationary distribution that approximates the

distribution of each parameter value θ ∈ Θ conditional on the observed statistic So.

Definition 2 Consider the statistics S and denote by So the observed statistics. Further,
let ∆(So

i ,Si) be a measure of distance between the i-th realized statistic Si of the network
formation process (Gt)

T
t=1 with parameter vector Θ and the i-th observed statistic So

i for
i = 1, . . . , K. Then we consider the Markov chain (Θs)

n
s=1 induced by the following algorithm:

(i) Given Θ, propose Θ′ according to the proposal density qs(Θ → Θ′).
(ii) Generate a network GT (Θ

′) according to Θ′ and calculate the summary statistics S′.
(iii) Calculate

(C.1) h(Θ,Θ′) = min

(

1,
qs(Θ

′ → Θ)

qs(Θ → Θ′)

K∏

i=1

1{∆(S′

i,S
o
i )<ǫi,s}

)

,

where ǫi,s ≥ 0 is a monotonic decreasing sequence of threshold values, ǫi,s ↓ ǫmin
i , and

∆ : RT
+ × R

T
+ → R+ is a distance metric in R

T
+.

(iv) Accept Θ′ with probability h(Θ,Θ′), otherwise stay at Θ and go to (i).

Marjoram et al. (2003) have shown that the distribution generated by the above algorithm
converges to the true conditional distribution of the parameter vector Θ, given the obser-
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vations τ o and the threshold values. Their result is stated more formally in the following
proposition.

Proposition 11 The stationary distribution f : RK → [0, 1]K of the Markov chain (Θs)
n
s=1

is given by

f

(

Θ

∣
∣
∣
∣
∣

K∏

i=1

1{∆(Si,So
i )<ǫmin

i }

)

.

Proof of Proposition 11: Let us denote the transition probability of the Markov chain
(Θs)

n
s=1 from state Θ to state Θ′ by ps(Θ → Θ′). Assume w.l.o.g. that for Θ 6= Θ′ and

1 ≤ s ≤ n it holds that

(C.2)
qs(Θ

′ → Θ)

qs(Θ → Θ′)
≤ 1.

Consider the distribution of the parameter vector Θ, conditional on the event {∆(So,S) ≤
ǫ} ≡

∏K
i=1 1{∆(Si,So

i )<ǫmin
i }, that is f(Θ|∆(So,S) ≤ ǫ) = P(∆(So,S) ≤ ǫ|Θ)/P(∆(So,S) ≤ ǫ).

We have that

f(Θ|∆(So,S) ≤ ǫ)ps(Θ → Θ′) =
P(∆(So,S) ≤ ǫ|Θ)

P(∆(So,S) ≤ ǫ)
P(∆(So,S′) ≤ ǫ|Θ′)qs(Θ → Θ′)

qs(Θ
′ → Θ)

qs(Θ → Θ′)

=
P(∆(So,S′) ≤ ǫ|Θ′)

P(∆(So,S) ≤ ǫ)
P(∆(So,S) ≤ ǫ|Θ)qs(Θ

′ → Θ)

= f(Θ′|∆(So,S′) ≤ ǫ)qs(Θ
′ → Θ)P(∆(So,S) ≤ ǫ|Θ)h(Θ′,Θ)

= f(Θ′|∆(So,S′) ≤ ǫ)ps(Θ
′ → Θ),

where we have used the fact that h(Θ′,Θ) = 1 if the inequality in (C.2) is satisfied. It follows
that f(Θ|∆(So,S) ≤ ǫ) satisfies a detailed balance condition and therefore is the stationary
distribution of the Markov chain. Q.E.D.

The algorithm of Definition 2 is implemented as follows. First we need to choose the
initial parameter values.38 The network size T is already given by the data. I set β = 0 for
all empirical networks as a starting value. In this case, the empirical average degree is used
as a restriction for the parameters p and m through d̄ = mp when the network is directed
(while d̄ = 2mp when it is undirected). I compute the power-law exponent α of the tail of
the empirical degree distribution for the network of coinventors (cf. Clauset et al., 2009). For
the directed model with heterogeneous linking opportunities and β = 0 one can show that
the distribution decays as k−α with α = 1 + 1+m

mp
for large degrees k in the case of β = 0.

Hence, I can compute p and m from these two conditions. For the network of coinventors

38Alternatively, we could choose a uniform prior distribution similar to e.g. Ratmann et al. (2009). How-
ever, this would greatly amplify the number of iterations needed to reach the stationary distribution (which
is independent of the initial conditions). For computational reasons I thus specify the initial parameters
explicitly.
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I observe an empirical average degree of d̄ = 4.79 and α = 3.00, so that I obtain m = 8
and p = 0.56. In a similar way, I observe for the alliance network a power-law decay with
parameter α = 2.59 and an average degree of d̄ = 1.79. From these values I can compute
m = 2 and p = 0.89. Using the exponent of the power-law tail of the degree distribution
together with the average degree for the trade network yields conditions on p and m which
cannot be satisfied for the model with ns = 1. Moreover, the monotonic decaying behavior
of the empirical average nearest neighbor degree points at higher values of ns than one. I
thus set the starting value of ns for the trade network to 50. I use the same initial values for
both, the directed and the undirected network formation algorithms.

The proposal distribution qs(Θ → Θ′) is a truncated normal distribution Θ′ ∼ N (Θ,Σs)
1[Θmin,Θmax](Θ) for each parameter θ ∈ Θ with a diagonal variance-covariance matrix Σs =
diag{σ2

1,s, . . . , σ
2
L,s}. More precisely, for each continuous parameter θi ∈ R+ (i.e. p, β) I choose

a proposal distribution given by

qs(θi → θ′i) =
φ(θ′|θ, σ2

i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,n)
1[θmin

i ,θmax
i ](θ

′
i),

where φ(θ|µ, σ2) and Φ(θ|µ, σ2) are the pdf and cdf, respectively, of a normally distributed
random variable with mean µ and variance σ2. For the discrete parameters θi ∈ Z+ (i.e. ns,
while m is set through the condition d̄ = mp when the network is directed while d̄ = 2pm
when it is undirected), I choose a proposal distribution given by

qs(θi → θ′i) =
Φ(θ′i + 1|θ, σ2

i,s)− Φ(θ′i|θ, σ
2
i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,s)
1[θmin

i ,θmax
i ](θ

′
i).

During the “burn-in” phase (Chib, 2001), I consider a monotonic decreasing sequence of
thresholds given by ǫi,s ≥ ǫi,s+1 ≥ . . . ≥ ǫmin

i with ǫi,s+1 = max
{
(1− γ)ǫi,s, ǫ

min
i

}
and γ =

0.05. Similarly, I assume a decreasing sequence of variances σ2
i,s ≥ σ2

i,s+1 ≥ . . . ≥ (σmin
i )2 with

σ2
i,s+1 = max

{
(1− γ)σ2

i,s, (σ
min
i )2

}
for the proposal distribution qs(θi → θ′i). For the network

of coinventors and the model with undirected links a burn-in period of 4000 steps has been
used, for the network of firms’ alliances and the model with directed links a burn-in period of
2000 steps, and for the network of trade and the model with undirected links a burn-in period
of 150000 steps. The maximum number of iterations, n, has been chosen such that reasonably
high values of pθ(n) were obtained. As a measure of distance I choose the Euclidean distance

∆(Si,S
o
i ) =

√
∑T

j=1

(
Si,j − So

i,j

)2
. The parameter ranges are ns ∈ {1, . . . , 100}, p ∈ [0, 1] and

β ∈ [0, 100]. The parameters ǫmin
i are choose sufficiently small after long experimentation with

different starting values and burn-in periods.

The estimation results can be seen in Table II. The table shows the average over the
simulated parameter values, the standard error over these values, the corrected standard
error computed over batches of length 10 (Chib, 2001), the integrated autocorrelation time
ιθ (Sokal, 1996) and pn(θ) is Geweke’s spectral density diagnostic indicating the convergence
of the chain (Brooks & Roberts, 1998, Geweke, 1992).
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TABLE II

Estimation of the model parameters θ ∈ Θ = (m,β, ns, p) for the network of
inventors, the network of firms and the trade network. Two model

specifications have been considered: the case of entering agents observing only
the out-neighbors of selected incumbents (Model A), as in Definition 1, and the

case of entrants observing both, the out- and in-neighbors of the selected
incumbents (Model B), as discussed in Section 6.1. For both models

heterogeneity in the linking probabilities p ∈ [0, 1] are taken into account, as
discussed in Section 6.2. The table shows simulated averages of the parameters

and their standard deviations,A after the chain has converged.B

Model A Model B

µθ σ̄θ σθ ιθ pθ(n) µθ σ̄θ σθ ιθ pθ(n)

Inv. Netw.
T = 27495
ns 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 5.38 1.00
p 0.60 0.05 0.00 34.87 0.99 0.57 0.07 0.00 8.50 0.98
m 8.47 0.79 0.05 43.53 0.99 4.50 0.60 0.02 7.27 0.96
β 1.13 0.81 0.14 475.26 0.91 1.39 0.91 0.12 133.02 0.94
Firm Netw.
T = 7374
ns 30.41 2.38 0.50 583.81 0.87 32.43 5.18 1.10 752.51 0.92
p 0.56 0.29 0.05 720.58 0.81 0.81 0.10 0.01 116.19 0.93
m 5.60 5.12 0.81 694.27 0.78 1.02 0.14 0.02 181.78 0.75
β 0.00 0.00 0.00 82.98 0.67 0.02 0.01 0.00 61.43 0.89
Trade Netw.
T = 196
ns 62.45 18.45 4.01 65907 0.72 59.68 27.54 5.28 39329 0.79
p 0.32 0.07 0.00 594.63 0.99 0.59 0.17 0.00 209.22 0.99
m 136.02 27.56 1.22 482.82 0.99 39.76 15.49 0.47 201.24 0.99
β 1.56 1.45 0.24 19992 0.97 13.34 10.54 2.21 59713 0.90

A µθ is the average and σ̄θ is the simulation standard deviation of the respective parameter, while
σθ is the standard deviation calculated from batch means (of length 10) for each parameter
θ ∈ Θ (Chib, 2001). ιθ is the integrated autocorrelation time which should be much smaller
than the number n of iterations of the Markov chain (Sokal, 1996).

B pθ(n) is the p-value of Geweke’s spectral density diagnostic (converging in distribution to
a standard normal random variable as n → ∞) indicating the convergence of the chain
(Brooks & Roberts, 1998, Geweke, 1992). The maximum number of iterations, n, has been
chosen such that reasonably high values of pθ(n) were obtained.
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APPENDIX D: UNDIRECTED LINKS

In the following network formation process we allow entering agents to observe not only
the out-neighbors of incumbent agents but also their in-neighbors. The resulting network
can then be viewed as an undirected graph. The precise definition of the network growth
process is given below:

Definition 3 For a fixed T ∈ N∪{∞} we define a network formation process (Gt)t∈[T ] as
follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t > m+ 1 the graph Gt is
obtained from Gt−1 by applying the following steps:
Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt =

Pt−1 ∪ {t} and At = At−1 \ {t}, respectively.
Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed by

selecting without replacement ns ≥ 1 agents i ∈ Pt−1 uniformly at random and adding
i as well as the neighbors NGt−1(i) of i to St.

Link creation: Given the sample St, agent t creates m ≥ 1 links to agents in St without
replacement. For each link, agent t chooses the j ∈ St that maximizes ft(Gt−1, j) + εtj.

D.1. Large Observation Radius

We first consider the case of St = Pt−1. Let kj(t) denote the degree of agent j at time
t. Considering only the leading terms in O

(
1
t

)
we can write the probability that an agent

j ∈ Pt−1 to receive a link by the entrant t as follows

Kβ
t (j|Gt−1) ≈

m

1 + 2βm

1 + βdGt−1(j)

t
.(D.1)

Using the recursive Equation (B.3) with the attachment kernel in Equation (D.1) yields the
following proposition.

Proposition 12 Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (Gβ

t )t∈N introduced in Definition 3 with
ns large enough such that St = Pt−1 for every t > m+ 1. Then, for all k ≥ 0 we have in the
limit β → 0 that Pt(k) → P β(k), where

(D.2) P β(k) =
(1 + 2mβ)Γ

(

k + 1
β

)

Γ
(

3 + 1
β
+ 1

mβ

)

(1 +m+ 2mβ)Γ
(

1
β

)

Γ
(

k + 3 + 1
β
+ 1

mβ

) .

Proof of Proposition 12: Equation (D.2) follows directly from the recursion in Equa-
tion (B.3) and the attachment kernel in Equation (D.1). Q.E.D.

From Equation (D.2) we find that the large k behavior of the degree distribution follows

a power-law as P β(k) ∼ k−(3+ 1
mβ ). In the continuum approximation we can write for the
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dynamics of ks(t) using Equation (D.1) as

dks(t)

dt
=

m

1 + 2βm

1 + βkj(t)

t
,

with the initial condition ks(s) = m. The solution is given by

(D.3) ks(t) =
1

β

(

(1 + βm)

(
t

s

) βm

1+2βm

− 1

)

,

and we obtain for the degree distribution in the continuum approximation

(D.4) P β(k) =
1 + 2βm

m
(1 + βm)2+

1
βm (1 + βk)−(3+

1
mβ ),

with
∫∞

0
P β(k)dk = 1. This yields the same asymptotic behavior of the degree distribution

as in Equation (D.2).

Next, we turn to the average nearest neighbor connectivity.

Proposition 13 Consider the network formation process (Gβ
t )t∈R+ of Definition 3 with

St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (D.3)
holds. Then in the limit β → 0 the nearest-neighbor degree distribution is given by

(D.5) knn(k) =
1

β2k

(

1 +
1 + βk

1 + βm

(

β2Rs(s)− 1 + (1 + βm)2 ln

(
1 + βk

1 + βm

)))

,

where a = m
1+2βm

, the initial condition

Rs+1(s+ 1) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1

s∑

j=1

1

j2βa
,

and s = t
(

1+βm
1+βk

)2+ 1
mβ

.

Asymptotically, only the last term in Equation (D.5) is relevant and we obtain

(D.6) knn(k) ∼
1 + βm

β
ln

(
1 + βk

1 + βm

)

,

as k → ∞.

Proof of Proposition 13: Denote by Rs(t) =
∑

j∈NGt
(s) kj(t) the sum of the degrees
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of the neighbors of vertex s at time t. We can write

dRs(t)

dt
=

m2

1 + 2βm

1 + βks(t)

t
+

∑

j∈NGt
(s)

m

1 + 2βm

1 + βkj(t)

t

=
a

t
(m+ (1 + βm)ks(t) + βRs(t)) =

a

βt

(

(1 + βm)2
(
t

s

)βa

+ β2Rs(t)

)

,

where we have denoted by a = m
1+2βm

and using the fact that1 + βks(t) = (1 + βm)
(
t
s

)βa

from Equation (D.3) under the continuum approximation. The initial condition is given by

Rs(s) =
s∑

j=1

a

s
(1 + βkj(s))(1 + kj(s)) =

a(1− β)(1− 2mβ)

β
+

a

s

s∑

j=1

(1 + βkj(s))
2.

Using the fact that

(D.7) 1 + βkj(s) = (1 + βm)

(
s

j

)βa

,

we obtain

Rs(s) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1H(s, 2βa).

We then get

(D.8)

Rs(t) =
1

β2

(

1 +

(

aβ(1 + βm)2
(
1

s
H(s, 2aβ) + (1 +mβ) ln

(
t

s

))

− 1 + β2b

)(
t

s

)aβ
)

.

Using once again Equation (D.7) and inserting into knn = Rs

k
delivers Equation (D.5). Q.E.D.

Moreover, we can compute the clustering degree distribution as provided in the next
proposition.

Proposition 14 Consider the network formation process (Gβ
t )t∈R+ of Definition 3 with

St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (D.3)
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holds. Then in the limit β → 0 the clustering degree distribution is given by

C(k) =
2

k(k − 1)

(

Ms +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s

−

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
)))

,(D.9)

where s = t
(

1+mβ
1+kβ

)2+ 1
mβ

, a = a
1+2βm

, b = m(m−1)(1+βm)2

β(1+2βm)
, c = βm+aβ(1−β)(1−2mβ)

(1+βm)2
, d =

c+aβ(1−2c)
1−2aβ

, the Harmonic number is defined as Ha
s ≡

∑s
j=1 j

−a and the initial condition
is given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j

)

.

The large k behavior of the clustering coefficient is dominated by the second term in
Equation (D.9), yielding

(D.10)

C(k) ∼
2bd

k(k − 1)s(1− 2aβ)
=

1

t

2bd

(1− 2aβ)(1 +mβ)
2+ 1

mβ

(1 + βk)
2+ 1

mβ

k(k − 1)
= O

(
1

t
k

1
mβ

)

, k → ∞.

Proof of Proposition 14: Let Ms(t) denote the number of triangles containing s at
time t. We have that

dMs(t)

dt
=

m

1 + 2βm

1 + βks(t)

t

∑

j∈NGt
(s)

m− 1

1 + 2βm

1 + βkj(t)

t

=
m(m− 1)(1 + βks(t))

(1 + 2βm)2t2
(ks(t) + βRs(t)).

With Rs(t) from Equation (D.8) and Equation (D.7) we obtain

dMs(t)

dt
=

b

t2

(
t

s

)2βa
(

c+ ln

(
t

s

)βa

+ aβ(s)2βa−1H2βa
s

)

,

where a = a
1+2βm

, b = m(m−1)(1+βm)2

β(1+2βm)
, c = βm+aβ(1−β)(1−2mβ)

(1+βm)2
and the Harmonic number is
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defined as Ha
s ≡

∑s
j=1 j

−a. The solution is given by

Ms(t) = Ms(s) +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s −

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
))

,

where d = c+aβ(1−2c)
1−2aβ

. Similar to the derivation of Equation (B.19), the initial condition is
given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s∑

j=i+1

1

j − 1

)

.

Using Equation (D.7) we then arrive at the expression in Equation (D.9). Q.E.D.

D.2. Small Observation Radius

Next, we consider the case of a small observation radius ns. The probability that agent
j receives a link from the entrant at time t, conditional on the sample St (and the current
network Gt−1) when β = 0 is given by

Kβ
t (j|St, Gt−1) =

m

|St|
1St

(j).

In the following, we assume that St ≈ ns(d̄+1), where the average degree is given by d̄ = 2m,
so that St ≈ ns(2m+1). Note that this assumption is much stronger than the approximation
we have made in Equation (3.5). The probability that an agent j receives a link from t is
then given by

Kβ
t (j|Gt−1) =

m

|St|

ns(1 + dGt−1(j))

t
+O

(
1

t2

)

≈
m

ns(2m+ 1)

ns(1 + dGt−1(j))

t
+O

(
1

t2

)

≈
m

2m+ 1

1 + dGt−1(j))

t
.(D.11)

An analysis following the recursive Equation (B.3) with the attachment kernel in Equation
(D.11) yields the following proposition.

Proposition 15 Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (Gβ

t )t∈N of Definition 3 with β = 0. If
ns > 1 or m > 1, further assume that Equation (D.11) holds. Then, for all, k ≥ 0 we have
Pt(k) → P (k), where

(D.12) P (k) =
(1 + 2m)Γ

(
3 + 1

m

)

mΓ
(
3 + k + 1

m

) .
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Proof of Proposition 15: Equation (D.12) follows directly from the recursion in Equa-
tion (B.3) and Equation (D.11). Q.E.D.

From Equation (D.12) we find that the degree distribution follows a power-law as P (k) ∼

k−(3+ 1
m) for large k. For the dynamics of ks(t) in the continuum approximation we get with

Equation (D.11) the following differential equation

dks(t)

dt
=

m

2m+ 1

ks(t) + 1

t

with the solution

(D.13) ks(t) = (m+ 1)

(
t

s

) m
2m+1

− 1

The degree distribution in the continuum approximation is then given by39

(D.14) P (k) =
2m+ 1

m
(m+ 1)2+

1
m (1 + k)−(3+

1
m),

satisfying the normalization condition
∫∞

0
P (k)dk = 1.

Next we consider the average nearest neighbor degree.

Proposition 16 Consider the network formation process (Gβ
t )t∈R+ of Definition 3 in the

continuum approximation with ns small enough and assume that Equation (D.13) holds. If
β = 0 then the nearest-neighbor degree distribution is given by

(D.15) knn(k) =
1

k

((
t

s+ 1

)a
(
a(m+ 1)2s2a−1H2a

s − 1
)
+ (m+ 1)

(
t

s

)a

ln

(
t

s+ 1

)a)

,

where a = m
2m+1

, s = t
(

k+1
m+1

)− 1
a and the Harmonic number is defined as H2a

s ≡
∑s

j=1
1
j2a

.

Proof of Proposition 16: Let Rs(t) =
∑

j∈NGt
(s) kj(t) be the sum of the degrees of the

neighbors of vertex s at time t. Denoting by a = m
1+2m

, we have up to leading orders in O
(
1
t

)

that40

dRs(t)

dt
=

ns

t

∑

j∈NGt
(s)

m

|St|
kj(t) +

ns

t

m∑

j=1

j

(
ks(t)
j

)(
|St|−ks(t)

m−j

)

(
|St|
m

)

=
a

t
(ks(t) +Rs(t)) =

a

t

(

(m+ 1)

(
t

s

)a

− 1 +Rs(t)

)

,

39Note that the approximation for the degree distribution in Equation (D.14) has also been obtained in
Wang et al. (2009).

40We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed
vertices (other than s), which happens with probability O

(
1
t2

)
.
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where we have assumed that |St| ≈ ns(2m + 1) and used the relation s = t
(

k+1
m+1

)− 1
a . The

solution is given by

Rs(t) = 1 +

(
t

s

)a(

Rs(s)− 1 + (m+ 1) ln

(
t

s

)a)

,

and the initial condition is given by

Rs+1(s+ 1) =
a

s

s∑

j=1

(1 + kj(s))
2 = a(m+ 1)2s2a−1H(s, 2a).

Using this equation to solve for Cs delivers Equation (D.15). Q.E.D.

Finally, we can compute the clustering coefficient as given in the following proposition.

Proposition 17 Consider the network formation process (Gβ
t )t∈R+ of Definition 3 in the

continuum approximation with ns small enough and assume that Equation (D.13) holds. Let

a = m
2m+1

and b = 2a(m−1)
ns(2m+1)−1

with a > b > 0. If β = 0 then the average clustering coefficient

of an agent with degree k is bounded by C(k) ≤ C(k) ≤ C(k), where

C(k) =
2

(a− b)k(k − 1)

(

a− (a+mb)

(
1 + k

1 +m

) b
a

+ bk

)

,(D.16)

and

C(k) =
2

(a− b)k(k − 1)

(

a+

((
m

2

)

(a− b)− (a+mb)

)(
1 + k

1 +m

) b
a

+ bk

)

,(D.17)

and the property that C(k) = O
(
1
k

)
.

Proof of Proposition 17: We need to consider the cases we have encountered already
in the proof of Proposition 8 for a vertex s to form an additional triangle by an entrant t
(see Figure 9). The expected number of triangles associated with case (i) is given by

ns

t

m−1∑

j=1

j

(
ks(t)
j

)(
|St|−ks(t)−1
m−(j+1)

)

(
|St|
m

) =
ns

t

m(m− 1)ks(t)

(1 + 2m)ns(ns(1 + 2m)− 1)
,

where we have assumed that |St| = ns(2m+ 1). Similarly, for case (ii) we get

ks(t)
ns

t

(
|St|−2
m−2

)

(
|St|
m

) =
ks(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

ks(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
,
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Figure 10.— (Top row) Comparison of simulation results with the theoretical predictions
for T = 105, St = Pt−1 and m = 4 with β = 0.1 under the linear approximation to
the attachment kernel. (Bottom row) Comparison of simulation results for T = 105 and
ns = m = 4 (β = 0) with the theoretical predictions. Comparing the results of global and
local information, we find that they differ mainly in the clustering degree distribution.

and for case (iii) we obtain

2Ms(t)
ns

t

(
|St|−2
m−2

)

(
|St|
m

) =
2Ms(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

2Ms(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
.

Denoting by a = m
2m+1

and b = 2a(m−1)
ns(2m+1)−1

we can add cases (i), (ii) and (iii) to get

dMs(t)

dt
=

2a(m− 1)

t(ns(2m+ 1)− 1)
(ks(t) +Ms(t)) =

b

t

((

(m+ 1)

(
t

s

)a

− 1 +Ms(t)

))

.

Using as a lower bound for the initial condition Ms(s) ≥ 0 and an upper bound Ms(s) ≤
(
m
2

)

as well as s =
(

1+k
1+m

)−1/a
t, we obtain the corresponding bounds for the clustering coefficient

in Equations (D.16) and (D.17). Both bounds decay as 2b
a−b

1
k
for large k and their difference

vanishes for large k, implying that also C(k) = O
(
1
k

)
. Q.E.D.
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APPENDIX E: HETEROGENEOUS LINKING OPPORTUNITIES

In this section we assume that not all agents become active during the network formation
process. More precisely, we assume that only a fraction p ∈ (0, 1) of the population of agents
forms links, while the remaining agents stay passive throughout the whole evolution of the
network. We assume that initially, agents in [T ] = {1, 2 . . . , T} are randomly assigned to
sets P1 with probability 1 − p and to A1 with probability p, such that |A1| = ⌊pT ⌋ and
|P1| = ⌈(1 − p)T ⌉. The agents in [m] are all connected to each other and form a complete
graph Km. At time t ≤ m + 1 these agents are all in the set Pt. The network evolution
process is then defined as follows.

Definition 4 For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ]

as follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t ∈ [T ]\{1, . . . ,m+ 1}
the graph Gt is obtained from Gt−1 by applying the following steps:
Growth: Given P1 and A1, for all t > m, if agent t ∈ At−1 then the agent sets in period t

are given by Pt = Pt−1∪{t} and At = At−1\{t}, respectively. Otherwise, set Pt = Pt−1

and At = At−1.
Network sampling: If t ∈ At−1 then t observes a sample St ⊆ Pt−1. The sample St is con-

structed by selecting ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement
and adding i as well as the out-neighbors N+

Gt−1
(i) of i to St.

Link creation: If t ∈ At−1, given the sample St, agent t creates Xm ≥ 1, E(Xm) = m links
to agents in St without replacement. For each link, agent t chooses the j ∈ St that
maximizes ft(Gt−1, j) + εtj.

The number of links Xm to be created by an entrant is a discrete random variable with
expectation E(Xm) = m. The results and approximations we obtain in this section do not
depend on the specific distribution we choose for Xm. We illustrate this by comparing our
theoretical approximations with simulations for a uniform distribution Xm ∼ U{1, . . . , 2m−
1} and a Poisson distribution Xm ∼ Pois(m).

E.1. Large Observation Radius

We first consider the case of a large observation radius such that St = Pt−1 for all t > m+1.
Similar to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with degree
dGt−1(j) receives a link by the entrant at time t up to leading orders in O

(
1
t

)
is given by

(E.1) Kβ
t (j|Gt−1) ≈

pm

1 + βpm

1 + βdGt−1(j)

t
.

Following the recursive Equation (B.3) with the attachment kernel in Equation (E.1) yields
the following proposition.

Proposition 18 Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (Gβ

t )t∈N introduced in Definition 4 with
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ns large enough such that St = Pt−1 for every t > m + 1. Then, for all k ≥ m we have in
the limit β → 0 that P β

t (k) → P β(k) almost surely, where

(E.2) P β(k) =
1 + βmp

1 +mp(1 + β)

Γ
(

1
β
+ k
)

Γ
(

2 + 1+mp
βmp

)

Γ
(

1
β

)

Γ
(

2 + 1+mp
βmp

+ k
) .

Proof of Proposition 18: Equation (E.2) follows directly from the recursion in Equa-
tion (B.3) and the attachment kernel in Equation (E.1). Q.E.D.

From the attachment kernel in Equation (E.1) we can write for the dynamics of the in-
degree ks(t) of vertex s at time t in the continuum approximation

dks(t)

dt
=

pm

1 + βpm

1 + βkj(t)

t
,

with the initial condition ks(s) = 0. The solution is given by

(E.3) ks(t) =
1

β

((
t

s

) βpm

1+βpm

− 1

)

,

and we obtain for the degree distribution in the continuum approximation

(E.4) P β(k) =
1 + βmp

mp
(1 + βk)−(2+

1
βmp),

with
∫∞

0
P β(k)dk = 1. For p = 1 we recover the distribution in Equation (B.12). The degree

distribution from Equations (E.2) and (E.4) can be seen in Figure 11.
Next we consider the average nearest neighbor degrees. We can state the following propo-

sition.

Proposition 19 Consider the network formation process (Gβ
t )t∈R+ of Definition 4 with

St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (E.3)
holds. Then in the limit β → 0 the nearest-neighbor degree distribution is given by

(E.5) k−
nn
(k) =

1

β2k
(1 + (1 + βk)(ln(1 + βk)− 1)) ,

and the average nearest neighbor out-degree is given by

(E.6) k+
nn
(k) =

1

β2m

((

βm(1 + p(β − 1)) +
a

s
s2aζ(s, 2a)

)( t

s+ 1

)a

−mβ

)

,

where a = βmp
1+βmp

, s = t(1 + βk)−
1
a .
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Observe that Equation (E.5) is independent of p and identical to Equation (5.1) from
Proposition 5. From Proposition 19 we find that for large k,f the average nearest in-neighbor
connectivity grows logarithmically with k while the average nearest out-neighbor connectivity

becomes independent of k and grows with the network sizes as t
βmp

1+βmp .

Proof of Proposition 19: Let R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). Up to leading orders in O

(
1
t

)

we then have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

pm

1 + βpm

1 + βkj(t)

t
=

a

t

(
1

β
kj(t) +R−

s (t)

)

,

where we have denoted by a = βmp
1+βmp

. The initial condition is given by R−
s = 0. The solution

is

R−
s (t) =

1

β2

(

1 +

(
t

s

)a(

a ln

(
t

s

)

− 1

))

.

Using the fact that t
s
= (1 + βk)

1
a from Equation (E.3), we obtain

R−
s (t) =

1

β2
(1 + (1 + βk)(−1 + ln(1 + βk))) .

With knn(k) =
R−

s

k
, the expression in Equation (E.5) follows.

Next we turn to the average nearest out-neighbor degree. Consider a vertex s which has
received a linking opportunity upon entry. Let R+

s (t) =
∑

j∈N+
Gt

(s) kj(t). Then up to leading

orders in O
(
1
t

)
we obtain

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t

(
1

β
+ kj(t)

)

=
a

t

(
m

β
+R+

s (t)

)

,

where a = βpm
1+βpm

. The solution is given by

R+
s (t) = −

m

β
+ taCs.

The constant Cs is determined by the initial condition

R+
s+1 =

s∑

j=1

a

s

(
1

β
+ kj(t)

)

(kj(t) + 1) =
a

β2

(
β − 1 +mpβ(β − 1) + s2a−1H(s, 2a)

)
.

We then obtain

R+
s (t) =

1

β2

((

βm(1 + p(β − 1)) +
a

s
s2aH(s, 2a)

)( t

s+ 1

)a

−mβ

)

,
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with s = t(1 + βk)−
1
a from Equation (E.3) and k+

nn = R+
s (k)
m

. Q.E.D.

Moreover, we can derive the clustering degree distribution.

Proposition 20 Consider the network formation process (Gβ
t )t∈R+ of Definition 4 with

St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (E.3)
holds. Then in the limit β → 0 the clustering degree distribution is given by

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(
(1 + βk)b − 1

)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1ζ(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

,(E.7)

where a = βmp
1+βmp

, b = 2− 1
a
, c = βm(1 + p(β − 1)), the initial condition is given by

Ms+1 =
mp(m− 1)s2a−2

(1 + βpm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j

)

,

and s = t(1 + βk)−
1
a .

For large k (and small s, respectively) the first term in the initial condition Ms dominates,
and the behavior of the clustering coefficient is given by

(E.8) C(k) ∼
2t−2(1−a)(1 + kβ)2(

1
a
−1)

(k + pm)(k + pm− 1)

mp(m− 1)

(1 + βpm)2

m∑

i=1

i−a

m∑

j=i+1

j−a.

We see that this expression grows with k as a power-law with exponent 2
(
1
a
− 2
)
= −2 +

2
mpβ

.41 Moreover, we find that the clustering coefficient is decreasing with the network size

as t−2(1−a) = t−
2

1+mpβ .

Proof of Proposition 20: We need to consider the same cases as in the proof of Propo-
sition 7. The probability associated with case (i) in Figure 8 is given by

pm(1 + βks(t))

(1 + βpm)t

∑

j∈N+
Gt

(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(m+ βR+

s ).

Similarly, for the probability of case (ii) in Figure 8 we obtain

pm(1 + βks(t))

(1 + βmp)t

∑

j∈N−

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(ks(t) + βR−

s )

41We need only consider values of k such that C(k) does not exceed its upper bound given by one.
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Figure 11.— Comparison of simulation results with theoretical prediction of the link
formation process in Definition 4 under global information with p = 0.5, m = 4, β = 0.1
and T = 105. Simulation results for the deterministic case (◦) a uniform distribution Xm ∼
U{1, 2m − 1} (⋄) and a Poisson distribution Xm ∼ Pois(m) (2) both with expectation
E(Xm) = m are shown.

With R+
s and R−

s given by Equations (E.5) and (E.5), respectively, we obtain

dMs(t)

dt
=

pm(m− 1)(1 + βks(t))

(1 + βpm)t2
(m+ ks(t) + β(R+

s +R−
s ))

=
a2

t2
m− 1

pmβ3

(

(
c+ as2a−1H(s, 2a)

)
(
t

s

)a(
t

s+ 1

)a

+

(
t

s

)2a

a ln

(
t

s

)a
)

,

where we have denoted by c = βm(1 + p(β − 1)). The initial condition is given by

Ms+1 = p
m(m− 1)

2

s∑

j 6=i

1 + βki(s)

(1 + βpm)s

1 + βkj(s)

(1 + βpm)s
(Θ(m+ 1− i)Θ(m+ 1− j)

+Θ(i− j)Θ(j −m)pm
1 + βkj(i)

(1 + βpm)(i− 1)
+ Θ(j − i)Θ(i−m)pm

1 + βki(j)

(1 + βpm)(j − 1)

)

=
mp(m− 1)s2a−2

(1 + βpm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

∑

j=i+1

1

j − 1

)

,(E.9)

where we have denoted by a = βpm
1+βpm

. The initial condition Ms+1 together with Equation

(E.9) deliver

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(
(1 + βk)b − 1

)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1H(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

.

Together with the initial condition, this is the expression in Proposition 20. Q.E.D.

Next, we turn to the analysis of the connectivity of the networks generated by our model.
We consider only the simple case where m = 1 and the limit of strong noise with β → 0,
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where the network formation process follows a uniformly grown random graph.

Proposition 21 Let Ns(t) denote the number of components of size s at time t. Consider
the network formation process (Gβ

t )t∈N of Definition 4 with St = Pt−1 for all t > m + 1.
Assume that m = 1 and β = 0. If p < 1, then there exists no giant component and the
asymptotic (finite) component size distribution P (s) = limt→∞

Ns(t)
t

is given by

(E.10) P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) .

When p = 1 then there exists a giant component encompassing all nodes.

Proof of Proposition 21: Let Ns(t) denote the number of components of size s at time
t. For m = 1, the entrant t forms only a single link and we need only consider the case of
the component with size s − 1 to receive a link in the contribution to the growth of Ns(t).
It then follows that

Et [N1(t+ 1)|Gt] =N1(t) + (1− p)− p
N1(t)

t
,

Et [Ns(t+ 1)|Gt] =Ns(t) + p
(s− 1)Ns−1(t)

t
− p

sNs(t)

t
, s ≥ 2.

Denote by ns(t) =
Et[Ns(t)]

t
. Taking expectations in the above equations delivers

n1(t+ 1)(t+ 1) =n1(t)t+ (1− p)− pn1(t),

ns(t+ 1)(t+ 1) =ns(t)t+ p(s− 1)ns−1(t)− psns(t), s ≥ 2.

For the stationary distribution P (s) = limt→∞ ns(t) we then get

P (1) =
1− p

1 + p
,

P (s) =
p(s− 1)

1 + ps
P (s− 1), s ≥ 2.

From this recursive equation we obtain

P (s) = P (1)ps−1

s∏

k=2

k − 1

1 + pk
=

(1− p)Γ
(

1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) ,

which is Equation (E.10).
We next consider the generating function of the component size distribution g(x) =

∑∞
s=1 sP (s)xs. Observe that g(1) =

∑∞
s=1 sP (s) the fraction of nodes in finite components.

In the absence of a giant component (that grows with t), we must have that g(1) = 1. In-
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Figure 12.— Comparison of simulation results with theoretical predictions for the com-
ponent size distribution P (s) of the link formation process in Definition 4 under global
information with p = 0.5, m = 1, β = 0 and T = 105 (left panel); with p = 0.5, ns = 1,
m = 4, β = 0 and T = 105 (right panel).

serting Equation (E.10) into g(x) we find that g(1) = 1 as long as p < 1. Hence, the critical
probability for the emergence of a giant component is p = 1. Q.E.D.

From Equation (E.10) we find that the component size decays as a power law with exponent
1 + 1

p
, i.e.

P (s) =
1− p

p2
Γ

(
1

p

)

s−(1+
1
p)
(

1 +O

(
1

s

))

.

We finally note that when β → 0, the probability that a component H ∈ Gt−1 of size s
receives a link at time t, and thus grows by one, is given by

p
∑

i∈H

1 + βki(t)

(1 + βp)t
=

p

(1 + βp)t

∑

i∈H

(s+ βki(t)) ≈
sp

t
,

where we have used the approximation
∑

i∈H ki(t) ≈ sp. This is the same probability for
the growth of a component of size s as in the case of β = 0 and hence we obtain the same
component size distribution as in Equation (E.10).

E.2. Small Observation Radius

Next, we consider the case of a small observation radius corresponding to small values
of ns. Similar to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with
degree dGt−1(j) receives a link by the entrant at time t up to leading orders in O

(
1
t

)
is given

by

(E.11) Kβ
t (j|Gt−1) ≈

pm

1 +m

dGt−1(j) + 1

t
.

Using the recursive solution of Equation (B.3) we can state the following proposition.
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Proposition 22 Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (Gβ

t )t∈N of Definition 4 with β = 0.
Further assume that Equation (E.11) holds. Then, for all, k ≥ 0 we have Pt(k) → P (k),
where

(E.12) P (k) =
(1 +m)k!Γ

(

2 + m+1
mp

)

(1 +m(1 + p))Γ
(

2 + m+1
mp

+ k
) .

Proof of Proposition 22: Equation (E.12) follows directly from the recursion in Equa-
tion (B.3) and Equation (E.11). Q.E.D.

With Equation (E.11) it follows for the dynamics of ks(t) in the continuum approximation

dks(t)

dt
=

pm

m+ 1

ks(t) + 1

t
,

with the solution

(E.13) ks(t) =

(
t

s

) pm

1+m

− 1.

The degree distribution in the continuum approximation is then given by

(E.14) P (k) =
1 +m

pm
(1 + k)−(1+

1+m
pm ),

with
∫∞

0
P (k)dk = 1. For large k, Equations (E.12) and (E.14) are equivalent. Moreover, for

p = 1 we recover the distribution in Equation (B.14). Next we turn to the analysis of the
average nearest neighbor degree.

Proposition 23 Consider the network formation process (Gβ
t )t∈R+ of Definition 4 in the

continuum approximation with ns small enough and assume that Equation (E.13) holds. If
β = 0 then the average nearest in-neighbor degree distribution is given by

(E.15) k−
nn
(k) =

1

k
(1 + (k + 1)(ln(k + 1)− 1))

and the average nearest out-neighbor degree distribution is given by

(E.16) k+
nn
(k) =

mp+ 1

m+ 1
k +

p

m+ 1
t2a−1(k + 1)−

2a−1
a ζ(t(k + 1)−

1
a , 2a)

where a = mp
1+m

.

Proof of Proposition 23: In order to derive Equation (E.15), let us denote by R−
s (t)
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the sum of the in-neighbors’ degrees of a vertex s at time t. We then have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

a

t
(1 + kj(t)) =

a

t

((s

t

)a

− 1 +R−
s (t)

)

,

where we have denoted by a = mp
1+m

. The initial condition is R−
s (s) = 0. The solution is given

by

R−
s (t) = 1 + (k + 1)(ln(k + 1)− 1),

where we have used the fact that s = t(k+1)−
1
a from Equation (E.13). Noting that k−

nn(k) =
R−

s

k
we readily obtain Equation (E.15).

Next, we consider the out-neighbors of s. Assume that vertex s has out-degree m and
denote by R+

s the sum of the in-degrees of the out-neighbors of s at time t. We then can
write

dR+
s (t)

dt
=

∑

j∈N+
Gt

(s)

a

t
kj(t) + p

ns

t

m∑

k=1

k

(
m
k

)(
ns(m+1)
m−k

)

(
ns(m+1)

m

) =
a

t

(

R+
s (t) +

m(mp+ 1)

m+ 1

)

,

The solutions is given by R+
s (t) = −m(1+mp)

1+m
+ Cst

a and the initial condition is

R+
s (s) =

s∑

j=1

a

s
(1 + kj(s))

2 = as2a−1H(s, 2a),

so that we get

R+
s (t) =

m(mp+ 1)

m+ 1

((
t

s

)a

− 1

)

+ as2a−1H(s, 2a).

Inserting s = t(k + 1)−
1
a from Equation (E.13) and using the fact that knn(k) =

R+
s

m
delivers

Equation (E.16) . Q.E.D.

In a similar fashion as in Proposition 8 we can also compute the clustering degree distri-
bution.

Proposition 24 Consider the network formation process (Gβ
t )t∈R+ of Definition 4 in the

continuum approximation with ns small enough and assume that Equation (E.13) holds. If
β = 0 then the average clustering coefficient of an agent with degree k is given by Proposition
8 setting a = mp

m+1
.

Proof of Proposition 24: We need to consider the same cases as in the proof of Propo-
sition 8. We take |St| = ns(m+ 1) ignoring terms of the order O

(
1
t2

)
. For the probability of

79



case (i) we obtain

p
ns

t

m−1∑

k=1

k

(
m
k

)(
((ns−1)(m+1))

m−(k+1)

)

(
ns(m+1)

m

) = p
m2(m− 1)

(m+ 1)(ns(m+ 1)− 1)t
.

For case (ii) we get

pks(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
ks(t)

t

m(m− 1)

ns(m+ 1)(ns(m+ 1)− 1)
.

and similarly, for case (iii) we get

pMs(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
Ms(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

The dynamics of Ms(t) is then given by

dMs(t)

dt
=

a(m− 1)

t(ns(m+ 1)− 1)
(m+ ks(t) +Ms(t))

=
b

t
(m+ ks(t) +Ms(t)) =

b

t
(m+

(
t

s

)a

− 1 +Ms(t)),

with a = mp
m+1

. This differential equation is identical to (B.20) and hence we obtain the same
result as in Proposition 8. Q.E.D.

In the following we study the connectivity of the emerging networks in the network for-
mation process introduced in Definition 4. We restrict our analysis to the case of ns = 1.
Observe that the probability that a component of size s grows by one unit due to the at-
tachment of an entrant t is equivalent to the event that t observes one of the nodes in the
component when constructing the sample St. The probability of this event is ps

t
. Hence, we

obtain the same component size distribution as in Proposition 21. We then can state the
following proposition.

Proposition 25 Let Ns(t) denote the expected number of components of size s at time
t. Consider the network formation process (Gβ

t )t∈N of Definition 4 with ns = 1. Then the

asymptotic component size distribution P (s) = limt→∞
Ns(t)

t
is given by

(E.17) P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) .

Proof of Proposition 25: The proof follows the one of Proposition 21. Q.E.D.
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Figure 13.— Comparison of simulation results with theoretical predictions of the link
formation process in Definition 4 with p = 0.5, ns = 1, m = 4, β = 0 where the network size
is T = 105 (top row) or T = 2×105 (bottom row). We show simulations for the deterministic
case (◦), a uniform distribution Xm ∼ U{1, 2m − 1} (⋄) and a Poisson distribution Xm ∼
Pois(m) (2) both with expectation E[Xm] = m.
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