
Extracting and Formatting Patent Data from USPTO XML

Gabe Fierro

College of Engineering
University of California, Berkeley

Fung Technical Report No. 2013.06.16
http://www.funginstitute.berkeley.edu/sites/default/!les/Extracting_and_Formatting.pdf

June 16, 2013

130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www.funginstitute.berkeley.edu

Lee Fleming, Faculty Director, Fung Institute

Advisory Board

Coleman Fung
Founder and Chairman, OpenLink Financial
Charles Giancarlo
Managing Director, Silver Lake Partners
Donald R. Proctor
Senior Vice President, O!ce of the Chairman and CEO, Cisco
In Sik Rhee
General Partner, Rembrandt Venture Partners

Fung Management

Lee Fleming
Faculty Director
Ikhlaq Sidhu
Chief Scientist and CET Faculty Director
Robert Gleeson
Executive Director
Ken Singer
Managing Director, CET

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro!t or commercial
advantage and that copies bear this notice and the full citation on
the !rst page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior speci!c permission.

The Coleman Fung Institute for Engineering Leadership,
launched in January 2010, prepares engineers and
scientists – from students to seasoned professionals –
with the multidisciplinary skills to lead enterprises of all
scales, in industry, government and the nonpro!t sector.

Headquartered in UC Berkeley’s College of Engineering
and built on the foundation laid by the College’s
Center for Entrepreneurship & Technology, the Fung Institute
combines leadership coursework in technology innovation
and management with intensive study in an area of industry
specialization. This integrated knowledge cultivates leaders
who can make insightful decisions with the con!dence that
comes from a synthesized understanding of technological,
marketplace and operational implications.

130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www.funginstitute.berkeley.edu

Abstract: We describe data formatting problems that arise from extracting useful and relevant data from
the XML !les distributed by USPTO. We then describe solutions for a consistent data schematic that dictates
in what format the extracted data !elds should be stored and how these transformations should be applied
to the data.

130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www.funginstitute.berkeley.edu

1 Introduction

The patent data available through the United States Patent and Trademark O�ce (USPTO) is
formatted as Extensible Markup Language (XML) and is an excellent source of patent data, but is
limited in its utility for statistical research by a collection of idiosyncrasies that a↵ect how the data
may be understood. An e↵ective parser for this data must be made aware of such inconsistencies
and deficiencies so as to provide pristine and operable output.

The main goal of our parser is to create a cleaner, more modular solution to the above problem.
We want to make it easy to extract the data we want, and facilitate further extensions on the
parser so that we can apply it to new data sources and adapt the output to new destinations.
Furthermore, we want to extract data in a consistent matter, agreeing upon standards regarding
text encodings, string formatting, order of tags, and other relevant issues.

A good parser will extract data in a form as close as possible to the original, decreasing the
chance that our process will add noise to the data. By standardizing the process by which we extract
relevant information from our raw data, we can be more confident in the detail of that data. A
high level of detail is vital to the accuracy and e↵ectiveness of the disambiguation algorithm, which
uniquely identifies inventors and is one of the primary applications of the patent data.

2 Parsing Toolchain and Data Process

Considering the large volume of data we are addressing and the fact that new data is available on
a weekly basis, it is imperative to have a robust and pinelined process for putting the data in a
useable state.

We draw our raw patent data from three separate sources: the Harvard Dataverse Network
(DVN) collection of patent data from 1975 through 2010 [2], the patent data used in the National
Burearu of Economic Research (NBER) 2001 study covering patent data from 1975 through 1999
[1] and more recent patent grant data pulled from weekly distributions of Google-hosted USPTO
records [7]. The DVN and NBER data are available as SQLite databases, having already been
catalogued. The raw data we pull from Google arrives as concatenated XML files, and must be
parsed before it can be cleaned and enhanced with features such as geocoding (associating latitude
and longitude with assignees, inventors and the like). For source URLs, please consult the appendix.

Harvard
DVN NBER USPTO/

Google

Merged Database (SQL)

XML ParserData Cleaner

Figure 1: Basic view of data pipeline for processing patent data

1

After the raw XML has been parsed, the data is cleaned and enhanced and then merged into
the final database along with the NBER and DVN data.

3 Text Format and Encoding

Online distribution of data involves an awareness of the various datatypes used to disseminate
information, to wit, XML and HTML. In packaging data for such distribution, resolution is usually
sacrificed. Accents, brackets and other extraordinary characters must be encoded or “escaped”,
sometimes in non-obvious or non-standard ways.

3.1 HTML Idioms and Escaping

The downloaded patent data uses UTF-8 encoding and is packaged in valid XML documents. There
are several Document Type Definitions (DTDs) used by USPTO that comprise the collections of
XML documents we download, but it appears that the most recent one has been used since about
2005. This means that when dealing with recent data, the data formatting decisions outlined here
will apply to a large subset of the data we will be using. The fact that USPTO distributes valid
XML means that our parser can be built upon an easily extensible base such as the Python 2.x
xml.sax module [3], which handles UTF-8 encoding and unescapes the following HTML entities:

Name Character Literal Escape Sequence
ampersand “&” &

emdash “—” —

left angle bracket “<” <

right angle bracket “>” &rt;

It is appropriate to keep all HTML escaped, but this can be easily achieved through the escape
method found in Python’s built-in cgi module.

An e↵ort should be made to make the parsed text as human-readable as possible while still main-
taining the safety of escaped HTML, including the translation of idioms such as _{—}
(an underscore) to their character literals if doing so does not conflict with the additional goal of
HTML escaping, defaulting to the Unicode encodings if we are unsuccessful.

3.1.1 Takeaways

We will use Python’s cgi.escape method [4] to convert inner tags (HTML tags that appear within
the XML structure) to be HTML-safe. This will help with distribution. We will also maintain UTF-
8 text encoding by normalizing the strings we extract from the XML documents by using Python’s
unicodedata.normalize method with the NFC option [5].

3.2 Escape Sequences

Naive parsers will sometimes preserve the raw escape characters in the outputted strings, e.g. \r,\n
and \t. These are not essential to the semantic content of the tags we are extracting, especially
since the tags that do contain these escape sequences are not used in critical applications such as
the disambiguation.

2

Currently, the escape sequences only appear in the results from our original production parser
because the parser uses Python’s builtin methods such as toxml() and then removes tags using
regular expressions. Resolving to a standard of removing all escape sequences will help avoid
confusion when using string comparison to identify elements of patents, as most string comparison
engines take into account “invisible” characters such as escape sequences.

3.3 Combined Database Inconsistencies

When combining the data from USPTO’s XML repository with historical data from DVN [2] and
data from the NBER [1], a surprising range of inconsistencies arises in regards to which ASCII
sequences are used to represent general patterns such as accents.

We have encountered the following inconsistencies across names alone:

1. Missing accented letters: “Rémy” becomes “R my”

2. Described accented letters: “Rémy” becomes “R acute over e my”

3. Missing accents on accented letters: “Rémy” becomes “Remy”

4. Correctly accented letters: “Rémy”

The NBER data is consistent in dropping accents from the letters, and while this is the most
preferred of the 3 errors listed above, it is not optimal. It is entirely possible to represent accented
characters given the right ASCII sequences, and an attempt should be made to standardize that.
The preservation of accents and other special ASCII characters is automatically handled by the
Python’s unicodedata.normalize method with the NFC option. By normalizing to UTF-8, we can
avoid the accent problems by keeping the accents. This will require normalizing all of our historical
data, as well as some more intensive work on the NBER data.

Another inconsistency between the combined databases mentioned above is the association of
last name prefixes such as “van der“ and “de”. Because the first names and last names of inventors
are stored as separate columns in our databases, which field these prefixes are associated with is
vital to the correctness and consistency of any future queries.

The NBER data is consistent in associating these prefixes with the beginning of the last name,
but the historical DVN data sometimes a�liates the prefixes with the end of the first name.

The standard by which we will coerce our data is the association of such prefixes with the
beginning of the last name. This can be easily achieved by splitting the first name field on spaces,
and migrating all words after the first to the last name field.

Relatedly, there are varying degrees of punctuation found in the combined database. Hyphens
are often omitted from names, which is a design decision incompatible with our desire to associate
prefixes with the last name field; replacing hyphens with spaces will turn names such as “Sasson,
Michael-David” into “David Sasson, Michael.” Hyphens should be preserved to maintain correct-
ness. Other types of punctuation, e.g. periods and commas, can most likely be ignored as they do
not facilitate the specification of a given individual.

3.4 Document Numbers

The easiest and most straightforward way to uniquely identify a given patent is by its document
number, which is a unique number assigned to applications that have been issued patents. Doc-
ument number comparisons are used for such operations as counting up forward and backward

3

D Design patents
PP Plant patents
R Reissue patents
T Defensive publications
H SIR (Statutory Invention Registration)
X early X-patents

Figure 2: Character prefixes for di↵erent document types [6]

citations. Obviously, a consistent format for document numbers is imperative for any such opera-
tion on the data. Because the combined database encompasses such a large range of years, the data
itself is nuanced by subtle changes in the various USPTO DTDs. Document numbers may contain
commas, character prefixes, or extraneous padding 0s. Indeed, our own database contains multi-
ple versions of the same document number. Inconsistencies arise between repositories of patents as
well, making it di�cult to establish ground truths between disparate databases. The USPTO’s own
website omits leading zeros and includes commas when displaying numbers, but the downloaded
XML files appear with leading zeros but without the interspersed commas, e.g. “123,456” versus
“0123456”.

Non-utility patents have character prefixes that are useful for identifying the type of document
(see table). Fortunately, these prefixes are fairly consistent across databases, and are easily removed
for comparison with databases that do not include the character prefixes.

To cut down search time, it would be ideal to avoid having to conduct a search for both the
padded and unpadded versions of a given patent number. This presents us with two options: adding
the leading 0 to all US patents, or removing the leading 0.

In examining the databases, there are 70496082 patents with the leading 0, and only 275554
without, at the time of writing. Adding a leading 0 to all patents would solve the local consis-
tency issue with a minimal amount of reprocessing of the existing databases, but would fail to
solve compatibility with other repositories (that do not contain the leading 0) without additional
reprocessing of the entire database.

It makes more sense to remove the leading 0 from these patents; then, the patent document
numbers would be standardized without any superfluous bytes. There is no obvious rationale for
maintaining the leading 0, and eliminating it would provide for easy cross-checking with external
repositories. Though this approach requires more reprocessing of the current data, this one-time
cost is worth the benefits.

4 Acknowledgements

We would like to thank the Fung Institute for Engineering Leadership for supporting this research.
This work is funded by the National Science Foundation under grant 1064182.

References
[1] Hall, B. H., Jaffe, A. B., and Trajtenberg, M. The nber patent citation data file: Lessons, insights and methodological

tools. Working Paper 8498, National Bureau of Economic Research, October 2001.

4

[2] Lai, R., D’Amour, A., Yu, A., Sun, Y., and Fleming, L. Disambiguation and co-authorship networks of the u.s. patent
inventor database (1975 - 2010).

[3] Python Software Foundation. http://docs.python.org/2/library/xml.sax.html, 2013.

[4] Python Software Foundation. http://docs.python.org/2/library/cgi.html#cgi.escape, 2013.

[5] Python Software Foundation. http://docs.python.org/2/library/unicodedata.html#unicodedata.normalize, 2013.

[6] USPTO. http://patft.uspto.gov/netahtml/PTO/help/helpflds.htm#Patent_Number, 2013.

[7] USPTO, and Google. http://www.google.com/googlebooks/uspto-patents-grants-text.html, 2013.

Appendix: Data Sources and Code Repository

The NBER data is available at http://www.nber.org/patents/.
The DVN data is available at http://dvn.iq.harvard.edu/dvn/dv/patent/faces/study/StudyPage.
xhtml;jsessionid=fd8595bd5c692dce0bef4ed95108?globalId=hdl:1902.1/15705&studyListingIndex=

0_fd8595bd5c692dce0bef4ed95108.
The USPTO data is available at http://www.google.com/googlebooks/uspto-patents-grants-text.
html.
The parsing code and the patent processor toolchain can be found on Github at https://github.
com/funginstitute/patentprocessor/.
Links to our merged database can be found at https://github.com/funginstitute/downloads.

5

http://docs.python.org/2/library/xml.sax.html
http://docs.python.org/2/library/cgi.html#cgi.escape
http://docs.python.org/2/library/unicodedata.html#unicodedata.normalize
http://patft.uspto.gov/netahtml/PTO/help/helpflds.htm#Patent_Number
http://www.google.com/googlebooks/uspto-patents-grants-text.html
http://www.nber.org/patents/
http://dvn.iq.harvard.edu/dvn/dv/patent/faces/study/StudyPage.xhtml;jsessionid=fd8595bd5c692dce0bef4ed95108?globalId=hdl:1902.1/15705&studyListingIndex=0_fd8595bd5c692dce0bef4ed95108
http://dvn.iq.harvard.edu/dvn/dv/patent/faces/study/StudyPage.xhtml;jsessionid=fd8595bd5c692dce0bef4ed95108?globalId=hdl:1902.1/15705&studyListingIndex=0_fd8595bd5c692dce0bef4ed95108
http://dvn.iq.harvard.edu/dvn/dv/patent/faces/study/StudyPage.xhtml;jsessionid=fd8595bd5c692dce0bef4ed95108?globalId=hdl:1902.1/15705&studyListingIndex=0_fd8595bd5c692dce0bef4ed95108
http://www.google.com/googlebooks/uspto-patents-grants-text.html
http://www.google.com/googlebooks/uspto-patents-grants-text.html
https://github.com/funginstitute/patentprocessor/
https://github.com/funginstitute/patentprocessor/
https://github.com/funginstitute/downloads

	Introduction
	Parsing Toolchain and Data Process
	Text Format and Encoding
	HTML Idioms and Escaping
	Takeaways

	Escape Sequences
	Combined Database Inconsistencies
	Document Numbers

	Acknowledgements

