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Abstract

Because knowledge plays an important role in the creation of wealth, economic actors often wish to skew the flow of knowledge
in their favor. We ask, when will an actor socially close to the source of some knowledge have the greatest advantage over distant
actors in receiving and building on the knowledge? Marrying a social network perspective with a view of knowledge transfer as a
search process, we argue that the value of social proximity to the knowledge source depends crucially on the nature of the knowledge
at hand. Simple knowledge diffuses equally to close and distant actors because distant recipients with poor connections to the source
of the knowledge can compensate for their limited access by means of unaided local search. Complex knowledge resists diffusion
even within the social circles in which it originated. With knowledge of moderate complexity, however, high-fidelity transmission
along social networks combined with local search allows socially proximate recipients to receive and extend knowledge generated
elsewhere, while interdependencies stymie more distant recipients who rely heavily on unaided search. To test this hypothesis, we
examine patent data and compare citation rates across proximate and distant actors on three dimensions: (1) the inventor collaboration
network; (2) firm membership; and (3) geography. We find robust support for the proposition that socially proximate actors have
the greatest advantage over distant actors for knowledge of moderate complexity. We discuss the implications of our findings for
the distribution of intra-industry profits, the geographic agglomeration of industries, the design of social networks within firms, and
the modularization of technologies.
© 2006 Elsevier B.V. All rights reserved.
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The flow of knowledge plays a central role in a wide
variety of fields (for a review, see Rogers, 1995). Soci-
ologists began investigating diffusion processes – and
the importance of social structure to those processes –
to understand the adoption patterns of agricultural and
medical innovations (Ryan and Gross, 1943; Coleman
et al., 1957). To students of technology management,
knowledge flow first arises as an important issue in the
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context of technology transfers within the firm (Allen,
1977; Teece, 1977), but questions of diffusion also arise
when technology scholars ask whether incumbent firms
or upstarts first develop and commercialize new inven-
tions (Reinganum, 1981; Tushman and Anderson, 1986).
Both students of organizational learning (for a review,
see Argote, 1999) and industrial economists (Griliches,
1957; Zimmerman, 1982; Irwin and Klenow, 1994) study
how knowledge moves through firms and how it spills
over to other firms. In short, a diverse array of scholars
shares an interest in knowledge diffusion processes.

The normative interpretation given to diffusion, how-
ever, differs dramatically across fields. Economists and
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sociologists tend to focus on the societal benefits of
spillovers (i.e. the flow of knowledge across actors, usu-
ally firms). The generation of new knowledge often
requires substantial investment in research and devel-
opment, but the repeated application of this knowledge,
once produced, entails little if any incremental cost
(Arrow, 1962). Knowledge diffusion, therefore, engen-
ders scale economies and stimulates economic devel-
opment by allowing several firms to benefit from the
R&D activities undertaken by a single firm (Marshall,
1890; Scherer, 1984; Romer, 1987). Management schol-
ars, by contrast, note that when knowledge escapes to
competing firms the returns to innovation become fleet-
ing at best. As rivals imitate new products and processes,
the degree of differentiation or cost advantage accru-
ing to the innovator erodes. The business literature thus
urges managers to defend against spillovers (Lippman
and Rumelt, 1982; Kogut and Zander, 1992).

Though their prescriptions differ, economists, soci-
ologists, strategists, and students of technology man-
agement all seek a better understanding of why some
knowledge disperses widely while other knowledge does
not. In this quest, some scholars have focused on the
attributes of the knowledge itself. For example, highly
specific knowledge may flow slowly because few parties
other than the initial innovator either have the base-
line knowledge and skills necessary to absorb it (Cohen
and Levinthal, 1990) or can benefit from its appli-
cation (Henderson and Cockburn, 1996; McEvily and
Chakravarthy, 2002). Other studies focus on how social
networks structure the flow of knowledge (e.g., Coleman
et al., 1957; Hansen, 1999; Singh, 2005), implicitly
attributing the rate of diffusion to the locus of innovation
in the network.

This paper seeks to augment our understanding of
knowledge flow by examining the interplay between
two features: social proximity and the complexity of the
underlying knowledge.1 Social proximity here refers to
the distance between two parties in a social network; for
example, one would consider those who have a direct
relationship to each other to be closer than those who
have a mutual acquaintance but have never met. We
meanwhile define complexity in terms of the level of
interdependence inherent in the subcomponents of a

1 Hansen (1999) also focuses on the interplay between social rela-
tions and knowledge flow. His research differs from ours in three
respects: (1) it does not explore the issues related to recipient search as
a mechanism for the interplay; (2) it focuses on the strength of the con-
nection between inventors rather than social proximity in a network;
and (3) it analyzes the effects of a portfolio of relations rather than the
characteristics of a connection in a dyad.

piece of knowledge (Simon, 1962; Kauffman, 1993; cf.
Zander and Kogut, 1995). Interdependence arises when
a subcomponent significantly affects the contribution of
one or more other subcomponents to the functionality of
a piece of knowledge. When subcomponents are inter-
dependent, a change in one may require the adjustment,
inclusion or replacement of others for a piece of knowl-
edge to remain effective.

Consider then an actor who is a source of knowledge
and two potential recipients of that knowledge—one
socially close to the source and one further away. When
does the proximate actor have the greatest advantage over
the distant in receiving and building on the knowledge?
We argue that the advantage should peak when the under-
lying knowledge is of moderate complexity. Our expec-
tation emerges from the recognition that receiving and
building on knowledge frequently requires the recipient
to engage in search to fill in gaps and correct transmis-
sion errors in the knowledge conveyed—the cost and
difficulty of which increase with knowledge complexity.
Social proximity reduces the need for search by facilitat-
ing high-fidelity transmission (i.e., complete information
with negligible noise). On the other hand, as the social
distance separating the source and the would-be receiver
grows, unaided search plays an increasingly important
role in diffusion. Under such conditions, simple knowl-
edge should flow universally – to actors near and far
– because search can easily substitute for high-fidelity
transmission. Highly interdependent knowledge mean-
while defies diffusion, regardless of whether one relies
on search or social proximity. For knowledge of mod-
erate complexity, however, a gap emerges between the
ability of close actors, relative to that of distant actors, to
receive and build on knowledge. High-fidelity transmis-
sion gives proximate actors sufficient insight that they
can succeed in receiving and building on knowledge,
even where more distant actors, who rely more heavily
on search, fail.

We analyze patent data to test our thesis empirically.
Citation patterns across patents offer something of a fos-
sil record for the flow of knowledge—providing a lasting
reflection of ephemeral interactions. Using this record,
we estimate the effect of knowledge complexity on the
likelihood of future citations as a function of the social
proximity of future inventors to the inventor of the orig-
inal piece of knowledge, comparing those socially close
to and far from the source. To assess social proxim-
ity, we calculate the geodesic length between patents’
inventors in a collaboration network. We also supple-
ment this metric with indicators of geographic proxim-
ity and employment within the same organization. To
gauge complexity, we develop a measure that reflects
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the historical interdependence of a patent’s subcompo-
nents with other subcomponents. The findings provide
strong support for our core hypothesis: the higher like-
lihood of citation among proximate inventors peaks for
knowledge of an intermediate level of complexity (inter-
dependence).

This work contributes to the literature in several ways.
First, from the perspective of social networks, it identifies
one condition under which social proximity should prove
especially important to knowledge flow: for knowledge
of intermediate complexity. Though social scientists
have usefully demonstrated that networks matter for the
diffusion of knowledge, relatively little research consid-
ers precisely when those networks should matter most
(Strang and Soule, 1998; Baker and Faulker, 2004). By
synthesizing the social network perspective with work on
conceptions of knowledge receipt as search, we identify
scope conditions on the relevance of social connections
to the diffusion process. Second, with respect to evolu-
tionary economics, our work highlights social connec-
tions as an important channel through which “insiders”
gain superior access to knowledge. Extant work asserts
that insiders – defined usually as those within the same
firm as the source – have better access to an original suc-
cess, which serves as a template in efforts to transfer and
extend that knowledge (Nelson and Winter, 1982: 119;
Rivkin, 2001). Yet this work fails to establish the source
of this preferential access. Does it come from incentives
that reward transfer, from the confidentiality agreements
that employees sign, or from some other source? Our
research points to direct social connections as a critical
factor differentiating these internal parties from those
outside the firm.

1. The flow of complex knowledge

Our discussion begins with the most common find-
ing of classic diffusion studies: the S-shaped cumula-
tive adoption curve (Ryan and Gross, 1943; Griliches,
1957; Rogers, 1995, provides an excellent review).
Researchers consistently find that the adoption of an
innovation over time follows a common pattern: grow-
ing slowly at first, then accelerating rapidly, and finally
slowing to reach some asymptotic saturation level.
These dynamics resemble that of an epidemic spread-
ing through a population; the innovation first ‘infects’
those most at risk of exposure – actors closest to the
original source (Hägerstrand, 1953) – and those most
susceptible to infection – those most prepared to accept
the uncertainty associated with an untested technology
(Mansfield, 1968) or whose idiosyncratic characteristics
make the innovation appear most attractive (Griliches,

1957). Over time, awareness of the innovation spreads,
uncertainty ebbs, and the economics of the invention
become favorable to a larger share of the population.
Diffusion then takes off. In this classic perspective, new
knowledge resembles a stone thrown into a calm pond,
its ripples moving steadily across the entire surface.

Though this pattern accurately describes the diffusion
of a wide variety of innovations and knowledge, critics
have faulted this focus on the S-curve for several rea-
sons (cf. Mahajan et al., 1990; Hargadon, 1998). Two
of these critiques have particular relevance here. First,
the classic diffusion literature typically depicts knowl-
edge as moving unaltered as it passes from one actor to
the next. Contrary to this depiction, in reality transmis-
sion rarely occurs with perfect fidelity. Both gaps in the
information sent and errors in its interpretation typically
require the receiver to reconstruct portions of the orig-
inal knowledge. This process occurs so commonly that
it even forms the basis of amusement in the children’s
game of telephone.2 Most knowledge, therefore, requires
effort to acquire and transmutes to some extent as actors
strive to receive and build upon it; recipients assimilating
new knowledge must actively process it by experiment-
ing with its application to new problem domains and
environmental contexts. Witness, for instance, the efforts
of American automakers as they struggled to digest the
knowledge embodied in Japanese lean production tech-
niques (Womack et al., 1990) or the labors of computer
makers as they sought to imitate Dell’s direct distribu-
tion model (Porter and Rivkin, 1999). In both cases, the
receipt of knowledge required years of trial, error, reflec-
tion, and adjustment and, arguably, remains incomplete.

Even within the supportive infrastructure of an orga-
nization, receiving and building on new knowledge can
prove difficult. Teece (1977), for example, reports that
the transmission and assimilation of technical know-how
accounted for 19% of project costs, on average – run-
ning as high as 59% in one case – in 26 international
technology transfer projects. Chew et al. (1990) find the
internal transfer of best practices so incomplete in multi-
plant commercial food operations that, within a firm,
the best plants produce twice as efficiently as the worst,
even after controlling for differences in processing tech-
nology, location, and plant size (Szulanski, 1996, offers
additional evidence). Hence, we regard the act of receiv-
ing and building on knowledge not as the acceptance of a

2 In this game, one child whispers a message into the ear of another,
who then whispers what she heard into the ear of a third child and so
forth. At the end, the final person announces the message he heard and
the first person reveals the message that she originally whispered; the
two usually differ dramatically.
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complete, well-packaged gift, but rather as the beginning
of a trial-and-error process.

Our second concern regarding the simple S-curve
characterization of diffusion arises from its inattention
to the crucial role that social networks play in diffusion.
Several studies, largely out of sociology, demonstrate
that knowledge spreads from its source not in concentric
circles, but along conduits defined by social connections
(Lazarsfeld et al., 1944; Coleman et al., 1966; Burt, 1987;
see Marsden and Friedkin, 1993, for a review). Consider
some of the relevant findings: Hedström (1994) discov-
ered that network density and geographic proximity can
explain most of the spread of the idea of unionization in
Sweden. In an analysis of adoption patterns for “poi-
son pills” and “golden parachutes,” Davis and Greve
(1997) offered strong evidence that information about
these policies travelled through corporate board inter-
locks. And Hansen (1999) found that strong ties best
conveyed complex knowledge across product develop-
ment teams within a firm. A growing literature thus
points to the importance of social networks as pathways
that channel the flow of knowledge among actors.

We synthesize these two perspectives – knowledge
receipt as an active process of experimentation and
search, and an appreciation for the role of social networks
– into a model of knowledge flow. The model offers
unique predictions regarding how knowledge complex-
ity influences patterns of success among efforts to receive
and extend knowledge.

1.1. Knowledge receipt as search

Building on the intellectual scaffolding of evolution-
ary economics, our perspective conceptualizes a piece
of knowledge as a recipe (Nelson and Winter, 1982).3

The list of potential ingredients encompasses both phys-
ical components and processes. The recipe details how
to combine these ingredients – in which proportions,
in what order, under what circumstances – to achieve a
desired end. For instance, a recipe for a McDonald’s out-
let might read something like: “When a customer places
a special order, the counter clerk keys the order into the
register, which causes the order to show up on the com-
puter screen in the kitchen, which induces the cook to put
a raw hamburger on the grill. . .” or “when opening a new

3 This assumption limits the applicability of our theory to innovations
that involve multiple components. This restriction should not severely
constrain its scope, however; few innovations do not involve the com-
bination of multiple physical components or processes. For example,
even the synthesis of nylon, a polymer, involved the integration of
several distinct processes (Smith and Hounshell, 1985).

outlet, a manager in the real estate department secures a
site while the franchising office identifies a franchisee.
Next, the franchisee contacts construction contractors
while hiring shift managers. . ..” Though these recipes
may appear in writing, they more commonly reside in
the form of behavioral routines, individual memory, or
technology (March and Simon, 1958).

The conceptualization of knowledge as a recipe
leads naturally to thinking of innovation as a process
of searching for new recipes. Following a long tradi-
tion (Schumpeter, 1939; Gilfillan, 1935; Usher, 1954),
Nelson and Winter (1982) explicitly treat innovation as
a search process; inventors explore the space of pos-
sible combinations of ingredients, or recipes, for new
and better alternatives. This exploration involves not just
the search for the best combinations of ingredients but
also the quest for the most effective methods of inte-
grating them. Researchers who conceptualize innovation
as search frequently exploit a landscape metaphor as
a means of providing an intuitive understanding of the
search process (Levinthal, 1997; Rivkin, 2000; Fleming
and Sorenson, 2001). Innovators – depicted as myopic in
their awareness of the terrain – search these landscapes
for peaks, which represent good recipes or useful inven-
tions.

Once a useful innovation has been located, transfer-
ring its recipe, even between cooperative actors, can fail
for two reasons. First, the recipient rarely grasps the
original recipe completely, due to imperfections in the
transfer process. Gaps emerge in what the sender con-
veys – perhaps the chef forgets an ingredient or skips
a step – and the receiver may misinterpret some of the
information that is transmitted. And, unless the recipient
understands perfectly the recipe that generated the suc-
cess – an unlikely situation – she must engage in search
to fill the gaps and correct the errors in her version of the
recipe. Any attempt to receive and extend a recipe in new
settings will likewise require the recipient to rediscover
the original combination, or some variant of it better
suited to the new context.

Second, the local ingredients and cooking experience
of the receiving chef rarely match identically those of
the sender. Research on absorptive capacity (Cohen and
Levinthal, 1990) emphasizes that successful knowledge
diffusion requires the receiver to possess a base of knowl-
edge and skills to assimilate new information. Without
this baseline, the transmission of new discoveries would
often entail the communication of exorbitant amounts
of data; imagine how long a recipe would become if
one needed to detail every step of the process—how
to chop vegetables, how to boil water, etc. These two
factors imply that knowledge recipients rarely, if ever,
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act merely as passive beneficiaries; they actively search,
recreate, and build upon the original recipes.

In this process, certain types of recipes prove particu-
larly tricky to transfer because the sender finds it difficult
to specify and communicate precisely where the origi-
nal combination resides in the combinatorial space of
ingredients; on the figurative treasure map, it is hard to
place the “X” that “marks the spot.” This communica-
tion difficulty could arise as a result of causal ambigu-
ity (Lippman and Rumelt, 1982; Reed and DeFillippi,
1990): the innovator might not fully understand the
connection between actions and outcomes so the roots
of the original success remain unclear. It could also
occur because the production process calls on tacit per-
sonal skills or connections among individuals that the
involved parties themselves do not consciously under-
stand (Polanyi, 1966; von Hippel, 1988), or that eludes
codification (Zander and Kogut, 1995). These factors
essentially increase the likelihood that the knowledge
transmitted has gaps. The complexity of the recipe itself
can also impair knowledge flow by increasing the diffi-
culty for the recipient of filling these gaps and correcting
transmission errors.

As noted above, complexity refers to the degree to
which the components in a recipe interact sensitively
in producing the desired outcome. Our definition here
closely follows Simon (1962), who classifies a piece of
knowledge as complex if it comprises many elements
that interact richly (see also Kauffman, 1993; cf. Zander
and Kogut, 1995). We adopt Simon’s definition, but pay
particular attention to the intensity of interdependence
among the ingredients in the recipe. A high degree of
interdependence indicates that many ingredients influ-
ence the effectiveness of others so that a change in one
may dramatically reduce the usefulness of the recipe.
Replicating the functionality of the original recipe often
requires adjustments in the set of other ingredients or
the processes for combining them. Low interdependence
implies small cross-component effects and a correspond-
ing opportunity to adapt and change ingredients indepen-
dently.

Discovering, or rediscovering, a complex piece of
knowledge poses a stiff challenge. Interdependence pro-
duces two effects that undermine the recipient’s attempts
to receive and build on the original. First, small errors
in reproduction cause large problems when ingredients
cross-couple in a rich manner. In highly interdepen-
dent systems, implementers often realize no value from
adopting a set of practices unless each-and-every com-
ponent fits into place perfectly; a single error threatens
the effectiveness of the entire system. An American
automaker that attempts to adopt lean production tech-

niques, for instance, may alter its human resource prac-
tices and inventory policies, yet see no benefit because
it failed to invest appropriately in flexible production
equipment. The fragility of such tightly coupled sys-
tems has been well documented (Weick, 1976; Perrow,
1984). Second, interdependence leads to a proliferation
of “local peaks.” These internally consistent – though
not necessarily optimal – ways of combining ingredients
elude improvement through incremental search because
altering any single element degrades the quality of the
outcome (Kauffman, 1993). Such local peaks would pose
no problem to omniscient actors, who could assess the
entire space of possibilities, but for individuals with finite
cognitive abilities and a limited purview of the landscape,
such search proves difficult; in the face of high interde-
pendence, searchers frequently find themselves trapped
on local peaks. Moreover, these local peaks tend to cor-
respond to poor recipes precisely when interdependence
creates a thick web of potentially conflicting constraints.

1.2. Complexity and access to a template

Success in receiving and building on complex knowl-
edge depends crucially on access to the original recipe,
which serves as a template (Nelson and Winter, 1982:
119–120; Winter, 1995). For reasons explored below,
individuals differ in their access to the template. Supe-
rior access facilitates the knowledge recipient’s search
in at least two ways. First, the recipient begins searching
in closer proximity to the ultimate target—as a result of
either fewer errors in the interpretation of the transmis-
sion or smaller gaps in the information sent. Second,
superior access allows the recipient to solicit advice
when problems arise, helping the recipient to home in
on the desired knowledge more efficiently.

Consider two actors both trying to receive and build
on a valuable piece of knowledge but who differ in their
access to the template. The first has superior, though
admittedly still imperfect, access to and understanding
of the original, successful recipe. The second has far
poorer access. To what degree does the first actor’s supe-
rior but imperfect access to the template have value, in
the sense that it enables the actor to receive and build
upon the original recipe more effectively? We contend
that the value of this access depends on the complexity of
the underlying knowledge in an inverted U-shaped rela-
tionship; that is, intermediate levels of interdependence
maximize the value of preferential access.

Suppose first that the ingredients of the knowledge
do not interact; getting one element in the recipe wrong
diminishes that component’s contribution to the whole,
but it does not undermine the other components. In this
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situation, the first actor’s access to the template does not
educe a persistent advantage. Through routine, incre-
mental search efforts, the second actor can reconstruct
the recipe. Few local peaks threaten to trap the poorly
informed recipient. As a result, both actors eventually
fare equally well; search on the part of a recipient can
easily substitute for high-fidelity transmission.

Next consider knowledge with an intermediate degree
of interdependence. Local peaks now appear, but they
remain relatively few in number. The well-informed
actor begins its search near, but not precisely at, the orig-
inal combination of ingredients. Through incremental
search, and with recourse to the template, it can assem-
ble the proper combination of ingredients. The second
actor, who likely begins search farther from the target
and receives less guidance about the direction in which
to explore, more likely becomes ensnared on some local
peak, away from and inferior to the original success.
Here superior access to the template gives the first actor
an advantage that the second cannot recreate through
search.

Finally, imagine a piece of maximally interdepen-
dent knowledge: ingredients depend on one another in an
extremely delicate way, and none produces much ben-
efit unless all align perfectly. Local peaks now pervade
the landscape and neither actor’s incremental search will
likely reproduce or build upon the original knowledge
with any success. The first actor’s superior access to the
template thus has little value beyond the second’s highly
imperfect access.

Taken together, these arguments imply that the advan-
tage of superior but imperfect access to the template
reaches its peak at moderate levels of interdependence
between knowledge components. With moderate inter-
dependence, the smoothness of the landscape allows a
party that begins its search near the desired peak to redis-
cover it through local search. Yet the landscape also has
sufficient ruggedness that an actor that begins search
far from the target likely finds itself trapped on a lower
peak. In contrast, the single-peaked landscape that comes
with independent components allows both parties to suc-
ceed in receiving and building on the source knowledge
through local search. The highly rugged landscape pro-
duced by extreme interdependence meanwhile stymies
both parties thoroughly. (For a more formal treatment,
see the simulation in the Appendix A.)

1.3. Social networks and template access

The quality of an actor’s access to the template may
depend on many factors. One crucial factor is the nature
of the actor’s social relations, which provide conduits

through which valuable information travels (Homans,
1950; Hägerstrand, 1953). In particular, we claim that
the quality of an actor’s access to a template declines
with social distance—that is, the number of nodes that
separate the actor from the source of the knowledge in a
social network. Direct, single-step connections provide
the most obvious and valuable links between inventors
and those attempting to receive and build on knowledge
because they permit two-way communication. The recip-
ient can therefore interactively query the original source
of the knowledge to correct errors or to fill gaps in the
original transmission.4

Short, indirect paths – for example with one or two
intervening steps – can also provide beneficial access to
the template, as even second-hand information provides
important clues about how to reconstruct and build on
new knowledge. Mutual acquaintances may also allow
for direct communication with the source if they will
introduce and vouch for a potential knowledge recipient
(Burt, 1992). Moreover, actors removed by only a few
steps from the knowledge source will share more back-
ground knowledge, a larger proportion of specialized
language, and a wider range of beliefs with the source
(for a review, see McPherson et al., 2001). All of these
facilitate high-fidelity transmission (Durkheim, 1912;
Arrow, 1974; Cohen and Levinthal, 1990). The qual-
ity of template access, however, undoubtedly declines
rapidly as the number of actors between the innovator
and the would-be receiver increases; as in the game of
telephone, each step in the path between the two parties
offers an opportunity for errors and omissions to creep
into the transmission.

The previous subsection argued that superior access to
the template creates the greatest advantage in knowledge
diffusion with knowledge of intermediate complexity
(interdependence). Combining that idea with the notion
that social proximity provides superior access to the tem-
plate, we arrive at the central proposition of our paper:

Hypothesis. In attempts to receive and build on knowl-
edge, actors who are socially close to the source of
the knowledge have the greatest advantage over distant
actors when the knowledge is of intermediate interde-
pendence.

In sum, we view knowledge diffusion as a search
to receive and build on an effective recipe. Recipients

4 Though not considered here, one might also consider the impor-
tance of tie “strength.” Weak ties have long reach but low bandwidth;
thus, they operate most prominently in the diffusion process when
transferring only short, simple messages (Hansen, 1999).
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socially proximate to the source of the knowledge have
superior, though still imperfect, access to the original
recipe. This advantage in access translates into higher
fidelity reproduction that benefits the actor most signifi-
cantly when the ingredients of the recipe display moder-
ate interdependence. Simple recipes spread through the
social network thoroughly, placing recipients both near
and far on equal footing. Highly intricate recipes resist
diffusion to even nearby actors. But for recipes of inter-
mediate interdependence, nearby actors receive enough
guidance from the template that local search delivers
them an effective replica of the original knowledge on
which they can build, while distant actors begin their
search processes from such flawed starting points that
subsequent efforts to receive and build on the interde-
pendent recipe tend to fail.

2. Empirical corroboration

To test our hypothesis, we analyzed prior art citations
to all U.S. utility patents granted in May and June of
1990 (n = 17,264).5 The data came from the Micro Patent
database and NBER public access data on patents (Hall
et al., 2001). Following much previous research, we view
a prior art citation as evidence of knowledge diffusion:
the applicant has successfully assimilated the knowledge
underlying the original patent to a new setting and built
upon it. Our statistical approach is to estimate the likeli-
hood that a focal patent receives a citation from a future
patent as a function of several factors: the interdepen-
dence of the knowledge underlying the focal patent, the
proximity of the inventors of the focal and citing patent
in a social network, the interaction of interdependence
and social proximity, and a set of control variables. The
results of the estimation allow us to examine how the
likelihood of citation by a socially proximate inventor
compares to the likelihood of citation by a distant inven-
tor as a function of knowledge interdependence. The
crucial test of our hypothesis is whether the gap between
the two probabilities peaks when the focal patent embod-
ies moderately interdependent knowledge.

2.1. Patents and the meaning of citations

Patents and their citation patterns provide an attrac-
tive test bed for our hypothesis for several reasons.
First, these citations have been carefully assigned. The
U.S. Patent Office requires all applicants to demonstrate

5 We constructed this dataset in the course of prior research. For
details on its construction, see Fleming and Sorenson (2001).

awareness of their invention’s precedents by citing sim-
ilar “prior art” patents. Patent examiners in each techno-
logical domain review and supplement the prior art ref-
erences to ensure accurate and comprehensive citations.
Second, consistent with our ontology of knowledge,
technology historians have demonstrated that one can
conceptualize patented inventions as combinations of
pre-existing technological components (Basalla, 1988).
The process of invention therefore involves both the
replication of prior discoveries and the extension of those
discoveries to new applications and in new combina-
tions. When a citation to prior art emerges on a new
patent, it suggests that the inventor has both success-
fully received and built upon the knowledge underlying
the earlier patent. Third, Fleming and Sorenson (2001)
have developed a technique for measuring the interde-
pendence among the components of an invention. The
technique draws on information uniquely available for
patents and potentially difficult to duplicate in other set-
tings.

This setting nevertheless also has its limitations. First,
our analysis rests on the assumption that some potential
knowledge recipients have better access to the template
than others. If every patent fully revealed the inventor’s
underlying knowledge of the invention, this assumption
would not hold. Inventor’s incentives, however, mini-
mize the likelihood of this problem. Patent applicants
prefer to disclose as little as possible to limit their com-
petitors’ ability to benefit from their disclosure (Lim,
2001). Indeed, conversations with the U.S. Patent Office
indicate that applicants often intentionally obfuscate
their descriptions to diminish the value of the knowledge
revealed (Stern, 2001).

Second, the use of citations as an indicator of knowl-
edge flows has been cast into doubt recently by the work
of Alcacer and Gittelman (in press), who find that exam-
iners add 40% of the citations found on U.S. patents.
On the one hand, this finding is comforting as it sug-
gests that examiners actively work to prevent applicants
from excluding citations to relevant prior art for strategic
reasons, such as those mentioned above. It is nonethe-
less potentially problematic for our study to the extent
that examiners most frequently insert socially proximate
citations to patents of intermediate interdependence. The
few studies that analyze the characteristics of examiner-
added citations, however, show no evidence of such a
bias (Alcacer and Gittelman, in press; Sampat, 2004).
Indeed, self-citations – which almost certainly reflect
true knowledge flows – as frequently come from examin-
ers as from inventors. This suggests to us that, on balance,
examiner intervention improves the quality of patent data
for our purposes and cannot account for our results.
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Consistent with this conclusion, Duguet and MacGarvie
(2005) find that firms’ patent citation patterns match their
survey responses regarding technology acquisition and
dispersion. At worst, if examiners add citations that do
not reflect true knowledge flows and do so in an unbiased
way, this should only add noise, increasing the difficulty
of finding statistical support for our hypothesis.

Third, patents admittedly offer imperfect measures of
invention. Inventors may limit their patent applications
to a subset of their discoveries, and one must ask whether
this selection process biases our results. Inventors most
likely seek legal protection when a patent raises a mean-
ingful barrier to imitation (e.g., when inventing around
the patent proves difficult), when the invention will not
quickly become obsolete, and when few alternative “nat-
ural” defenses protect the knowledge (Levin et al., 1987).
Of these conditions, the last seems most germane to our
study. It implies that our sample may under-represent
inventions that involve highly tacit, causally ambiguous
and complex knowledge. Empirical research, however,
suggests that this selection bias may not exist: Cohen et
al. (2000), for example, find that firms in industries with
complex products disproportionately choose to patent.

Finally, we recognize that patents represent but one
embodiment of knowledge. Though we have no reasons
to expect a priori that they should differ from other pieces
of knowledge, they may. Despite this potential limitation
on the scope of the applicability of our results, patents
offer an excellent first test bed for our ideas for the rea-
sons noted above.

2.2. Case-control design

Our unit of analysis is a patent dyad, one patent
issued in May or June of 1990 and one issued later
that may or may not cite the first. Hence our approach
conceptually follows that of other studies of the likeli-
hood of tie formation—in this case, the likelihood that
a future patent builds on the knowledge embodied in
one of our focal patents. These studies have typically
estimated tie formation on the entire matrix of possi-
ble relations (e.g., Podolny, 1994; Gulati, 1995). This
approach has two disadvantages. With large numbers of
nodes, in this case patents, it can generate enormous,
sparse matrices, increasing the difficulty of estimation
and variable construction. In our situation, this method
would generate nearly 20 billion dyads with only around
60,000 realized citations. In addition, this approach
raises questions regarding network autocorrelation and
the non-independence of repeated observations on the
same patents across multiple observations in the error
structure.

Instead, our analysis follows Sorenson and Stuart
(2001) in adopting a case-control approach to analyz-
ing the formation of ties (see Sorenson and Fleming,
2004, for an earlier application to patents). The case-
control sampling procedure works as follows. We begin
by including all cases of future patents, from July 1990
to June 1996, that cite any of our 17,268 focal patents:
60,999 in total. Since these citations occur, the depen-
dent variable Citeij takes a value of “1” for these cases to
denote a realized citation. In addition, we pair each focal
patent with four future patents that do not cite it (but that
could have).6 We set Citeij to zero for these control cases.
Though this generates a data set of 130,055 dyads, our
analysis restricts the sample used for estimation to the
72,801 cases where both inventors reside in the U.S.7 To
address the fact that focal patents enter the data more than
once, we report robust standard errors estimated without
the assumption of independence across repeated obser-
vations of the same focal patent.

The use of a matched sample introduces one new
problem. Logistic regression can yield biased estimates
when the proportion of positive outcomes in the sample
does not match the proportion of citations in the popula-
tion (Prentice and Pyke, 1979; Scott and Wild, 1997).
In particular, uncorrected logistic regression using a
matched sample tends to produce underestimates of the
factors that predict a positive outcome (King and Zeng,
2001). Large samples do not necessarily alleviate this
problem.

We adjust the coefficient estimates using the method
proposed by King and Zeng (2001) for the logistic regres-
sion of rare events (cf. Manski and Lerman, 1977).
The traditional logistic regression model considers the
dichotomous outcome variable a Bernoulli probability

6 We chose four patents for the “control” group so that the sam-
ple would have a roughly equal proportion of realized and unrealized
dyads. Although some feel that conditioning on important factors
improves the statistical power of a case-control sample (e.g., Jaffe
et al., 1993, implicitly make such an argument in drawing controls
from the same classes as the citing patents), the ideal method of select-
ing controls remains an open debate. Matching controls to cases on
one or more dimensions can lead to two problems in particular that
concern us. First, correcting the logit for over-sampling on the depen-
dent variable requires that one knows the sampling probabilities (King
and Zeng, 2001); matching controls to cases precludes the possibility
of calculating this information. Second, matching on an endogenously
determined factor risks generating biased results (e.g., when investigat-
ing diffusion processes, one would not want to consider the geographic
distribution of activity exogenous). Given these concerns, we sample
future patents at random and control for heterogeneity in the estima-
tion.

7 Including the foreign inventors does not change the results quali-
tatively.
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function that takes a value 1 with the probability π:

πi = 1
1 + e−Xiβ

,

where X represents a vector of covariates and β denotes
a vector of parameters. Researchers typically use maxi-
mum likelihood methods to estimate β. King and Zeng
(2001) prove that the following weighted least squares
expression estimates the bias in β generated by oversam-
pling rare events:

bias(β̂) = (X′WX)−1
X′Wξ,

where ξ = 0.5Qii[(1 + w1)π̂i − w1], the Q are
the diagonal elements of Q = X(X′WX)−1X′,
W = diag{π̂i(1 − π̂i)wi}, and w1 represents the fraction
of ones (citations) in the sample relative to the fraction
in the population. At an intuitive level, one regresses the
independent variables on the residuals using W as the
weighting factor. Tomz (1999) implements this method
in the relogit Stata procedure.

This case-control approach offers two principal
advantages over the count models employed in most
patent research. First, this method permits far more
fine-grained controls for heterogeneity in citing patents.
Count models preclude the possibility of controlling for

detailed features of a citing patent. The ability to account
for the attributes of the potential citing patents proves
critical, however, to testing our hypotheses, which sug-
gest that the ability of future inventors to receive and
build on the original knowledge varies as a function of
their social proximity. Second, analyzing citations at the
level of the citing-patent/cited-patent dyad avoids the
potential for aggregation bias inherent in count models.

2.3. Interdependence

Following Fleming and Sorenson (2001), we measure
the complexity of the knowledge in a patent by observ-
ing the historical difficulty of recombining the elements
that constitute it. Though it involves intensive calcula-
tion, the intuition behind the metric is straightforward:
a technology whose components have, in the past, been
mixed and matched readily with a wide variety of other
components has exhibited few sensitive interdependen-

cies. The measure considers the subclasses identified
in a patent as proxies for the underlying components.
Though in many cases subclasses correspond to iden-
tifiable physical components (such as in the example
below), they do not always align so closely. Our mea-
sure, however, requires only that these subclasses define
pieces of knowledge rather than physical components.
Combining some pieces that interact sensitively to each
other proves more difficult than connecting relatively
independent chunks of knowledge.

We calculate the measure of interdependence, k, in
two stages.8 Eq. (1) details our measurement of the ease
of recombination – the inverse of interdependence – for
subclass i used in patent j. We first identified every use
of the subclass i in previous patents from 1980 to 1990.9

The sum of the number of prior uses provided the denom-
inator. For the numerator, we counted the number of
different subclasses appearing with subclass i on previ-
ous patents. Hence, our measure increases as a particular
subclass combines with a wider variety of technolo-
gies, controlling for the total number of applications, and
captures the ease of combining a particular technology.
To create our measure of interdependence for an entire
patent, we averaged the inverted ease of recombination
scores for the subclasses to which it belongs (Eq. (2)):

Ease of recombination of subclass i ≡ Ei = Count of subclasses previously combined with subclass i

Count of previous patents in subclass i
(1)

Interdependence of patent j ≡ kj = Count of subclasses on patent j
∑

i ∈ j

Ei

. (2)

Intuitively, the measure operates as follows. Suppose
a patent embodies subclasses that have been combined
with a wide variety of subclasses, even in a handful of
previous patents. This indicates that the patent’s com-
ponents do not have delicate interdependencies that pre-
vent widespread recombination and the components can

8 Our measure k is related to but distinct from the parameter K in the
NK simulation models that have become popular in theoretical work
on complex systems (Kauffman, 1993). In NK simulations, the contri-
bution of each element in a system to overall system fitness depends
on the states of K other elements. K is set by the modeler and, like our
empirically measured k, reflects the degree of interdependence among
components in a system. Despite the conceptual linkage between our
measure k and Kauffman’s K, we do not purport to have measured his
K in a literal sense. For instance, our k does not equal the number of
elements that affect the contribution of each focal element.

9 Some might worry about the stability of this measure over time.
To test its robustness, we constructed a second k measure using data
from 1790 to 1990. That measure yielded a qualitatively identical set
of results.
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be mixed and matched independently. Such a patent
receives a low value of k. Suppose instead that a patent
embodies subclasses that have been combined, again and
again, with the same small set of other subclasses. We
presume those subclasses to be highly interdependent;
their repeated joint appearance in patents suggests that
the presence of one requires the appearance of the others.
Hence the patent’s k is high.

In addition to the measure’s face validity, it has been
validated externally via a survey of inventors. Fleming
and Sorenson (2004) asked a sample of patent holders the
following question, based on Ulrich’s (1995) definition
of interdependence: “Modules are said to be coupled
when a change made to one module requires a change
to the other module(s) in order for the overall invention
to work correctly. How coupled were the modules of
your invention?” They then compared survey responses
to calculated k for the corresponding patents and found a
significant correlation between inventors’ perceptions of
coupling and the calculated degree of interdependence.

Concrete examples may clarify the metric further and
help to link it to our core hypothesis. Consider a digital
technology patent, #5,136,185, filed by the third author
of this paper. Fig. 1 outlines the calculation of k for
this patent and the mapping of the USPTO classifica-
tion scheme to the components used. 326/16 identifies
the “Test facilitate feature” subclass, which implements
a testing mode within a semiconductor chip. Prior to its
appearance here, this subclass had been recombined 116
times with 205 other components, implying an observed
ease of recombination score of 205/116 = 1.77. 326/56

indicates the “Tristate” subclass, and 326/82 points to
“Current driving fan in/out” subclass. 326/31 meanwhile
identifies the “Switching threshold stabilization” sub-
class (essentially a priority encoder). Fig. 1 illustrates
the location of these components on the circuit, the cal-
culation of their ease of recombination scores, and the
calculation of the patent’s interdependence, k (=0.61)—a
level slightly above the mean k for our sample.

The invention described above assists engineers in
testing the logic gates on new chips—a difficult task
when chips can contain hundreds of thousands or even
millions of such gates. Even though the patent appears
to disclose much of the important information, it does
not reveal the proprietary test generation algorithm, and
how that algorithm manipulated the components (in par-
ticular, the “test facilitate feature”). Without access to, or
an understanding of, that algorithm, rivals could see the
components of the knowledge in the patent but not how
the components worked together. As a result, competi-
tors faced an uphill battle in exploiting the knowledge.
Even within the firm, effective transmission required the
inventor to travel around the country to teach others how
to use the technology. Similarly, competitors found it
difficult to reproduce IBM’s copper interconnect tech-
nology – another invention of intermediate complexity
– until enough engineers defected to rivals to diffuse
the relevant knowledge of how to fabricate the copper
interconnect without contaminating the wafer’s other
materials (Lim, 2001).

By comparison, inventions involving extremely high
levels of interdependence defy diffusion even within

Fig. 1. Calculation of interdependence for patent #5,136,185.
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a social boundary. Plasmid preparation, for example,
a biological technique, involves an intricately inter-
twined sequence of actions involving various chemicals,
reagents and manual operations. As Jordan and Lynch
(1992: 84) note, “Although the plasma prep is far from
controversial and is commonly referenced as a well
established and indispensable technique, how exactly it
is done is not effectively communicated, either by print,
word of mouth, or demonstration.” On the other hand,
inventions involving a low degree of interdependence
diffuse rapidly. For instance, patent #4,927,016, one of
the patents in the bottom quartile of the k range, involves
the production of monoclonal antibodies. The industry
associated with this technology has essentially become a
commodity business since one can easily acquire all the
necessary knowledge components by reading a textbook
and piece them together without concern for sensitive
interdependencies. Polymerase chain reaction, a tech-
nique for amplifying DNA sequences, has followed a
similar route. Or, one might think of Sun’s worksta-
tion technology. The modular design of its system has
allowed rivals to match the performance of its hardware
quickly, limiting the company’s ability to maintain an
advantage in the hardware market.

2.4. Social proximity

The analyses investigate the effect of knowledge com-
plexity on the diffusion of knowledge to individuals
whose close social connections to the source of knowl-
edge give them better access to the template than indi-
viduals with distant or no connections have. For each
of our 72,801 patent dyads, we develop one direct and
two indirect indicators of social proximity between the
inventors of the two patents in the dyad.

2.4.1. Proximity in a collaboration network
Our most direct indicator measures the distance

between inventors in a network of patent collaborators.
The idea underlying this indicator is that an inventor
gains access to a template via collaborators, collabo-
rators of collaborators, collaborators of collaborators’
collaborators, and so forth. Closer connections grant bet-
ter access. To measure collaborative proximity, we use
the methods and data of Singh (2005).10 Consider the
dyad consisting of patent i issued in May or June of
1990 and patent j issued at a later time t (before 1996).
To compute the distance between i and j, Singh first con-
structs a network with a node for each discrete inventor

10 Breschi and Lissoni (2002) independently developed an equivalent
approach.

who has been listed on any patent from 1975 until time
t. An edge connects two inventors if they have collab-
orated on a patent during that period. The collaborative
distance of a patent dyad is then the minimum number of
intermediaries required to connect a member of the team
of inventors listed on patent i to a member of patent j’s
team. If the two teams share a member, for instance, the
distance is zero. If the teams have no common members
but an individual listed on neither patent has collaborated
with members of both i’s and j’s teams, the distance is
one, and so forth. If no path connects members of the
two teams, the distance is ∞. See Singh (2005) for a
complete description of his approach.

Based on the distance measure, we construct three
indicator variables for each dyad11:

• Close Collaborationij = 1 if the distance between
patents i and j is less than 4; 0 otherwise.

• Far Collaborationij = 1 if the distance between i and j
is 4 or greater but less than ∞; 0 otherwise.

• Unconnectedij = 1 if no path connects i and j.

The shorter the path between i and j, the better the
access to the template enjoyed by the team involved in
patent j. Our core hypothesis is that this superior access
translates into a higher probability of citation especially
when the components of patent i display intermediate
interdependence. Accordingly, we expect the gap in cita-
tion probability between a close and a far inventor – the
probability that a close inventor cites a focal patent minus
the probability that a far inventor cites the patent – to peak
at an intermediate level of k.

Although our collaborative distance measure pro-
vides direct evidence of access and we believe that it
captures many of the important connections between
inventors, inventors also have many other types of rela-
tions that might also facilitate access. For example, a
potential recipient might be a friend of the source even if
they have never collaborated. Attempting to identify all
of the potential relationships existing in any population
of individuals is not feasible, but we can examine two

11 Though the magnitude of the gap shrinks, our results remain qual-
itatively robust to shifting the dividing line between close and far from
a path length of three to a length of four. We use three categories rather
than the distance measure itself for three reasons: (1) calculating the
precise distance for the longer paths in these data would increase the
time required to compute it by orders of magnitude (i.e. by months);
(2) dummy variables for individual path lengths lead to some small cell
sizes and concomitantly unstable coefficient estimates; and (3) given
our interaction with a quadratic, we find the results of the categorical
coding far easier to interpret and understand.
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factors – geographic proximity and joint organizational
membership – that tend to structure social relationships
and therefore may proxy for unobserved social paths
between our source–recipient dyads. As McPherson et
al. (1992: 154) note: “Homophily structures the flow
of information and other social resources through the
network so that the dimensions themselves stand as prox-
ies for the number of intervening steps in transmissions
through the system.”

2.4.2. Geographic proximity
Space represents one important dimension that struc-

tures social interaction. Indeed, some of the earliest
literature on social networks emphasized the dramatic
decline in the likelihood of a social relation as two par-
ties became increasingly distant (Park, 1926; Bossard,
1932). Accordingly, we develop a measure of geographic
proximity for each patent dyad:

• Geographic proximityij = the natural log of the dis-
tance in miles between the first inventors listed on
patents i and j multiplied by negative one (so that larger
values indicate greater proximity).12

As with our direct measure of social proximity, we
expect geographic proximity to have the greatest impact
on citation likelihood when the potentially cited patent
displays moderate interdependence.

2.4.3. Organizational proximity
Social networks also concentrate within foci, such as

organizations (Feld, 1981). On a daily basis, most fully
employed individuals spend more waking hours engaged
in work than in any other activity. Employees regularly
meet other employees through work to cooperate on
projects, to confer on decisions, to transfer information,
and to socialize. Hence, we use employment at the same
patent assignee as another indicator of social proximity:

• Organizational proximityij = 1 if the same organiza-
tion owns both patents in a dyad, 0 otherwise.

12 All patents list the home address of the inventor on the front page
of the patent application. To locate each inventor, we match the inven-
tor’s 3-digit zip code to the latitude and longitude of the center of
the area in which the inventor resides based on information from the
U.S. Postal Service. We then use spherical geometry to calculate the
distance between the points. The USPTO includes 5-digit zip infor-
mation, but we choose to reduce measurement error by using cleaned
data. CHI, an information provider, has called every patent holder to
verify the inventor’s location; however, it records this information only
at the 3-digit level.

We expect common ownership to boost citation like-
lihood, especially for focal patents of moderate interde-
pendence.

We test our hypothesis by regressing Citeij on the
indicators of social proximity directly, the indicators
interacted with k, and the indicators interacted with k2.
We expect social proximity to boost citation probabil-
ity directly. The core test of our hypothesis resides not
in the direct effects but in the interaction terms: the
impact of proximity on citation probability should have
an inverted-U relationship with respect to interdepen-
dence k.13

In light of our empirical context, patent citations,
it is useful to elaborate our expectations about the
direct effect of k on citation likelihood. Our hypothe-
sis describes the impact of interdependence on the gap
between near and distant actors’ success in receiving
and building on knowledge. We examine this gap by
examining interactions of k and k2 with social distance.
In developing the hypothesis, however, we also paint a
picture of the direct impact of k on knowledge reproduc-
tion: we suggest that greater interdependence increases
the difficulty for a party of receiving and building upon
prior knowledge, regardless of the party’s distance from
the source. This argument concerns an actor’s success
in receiving and building on knowledge conditional on
an attempt to do so being undertaken. Patent citation
data nevertheless reflect not only success conditional on
an attempt being undertaken, but also the sheer num-
ber of attempts being undertaken. We have reason to
believe that the number of attempts may rise with inter-
dependence, simply because interdependence increases
the fertility that comes from mixing and matching com-
ponents (Fleming and Sorenson, 2001). Accordingly, we
offer no hypothesis about the direct effects of k on cita-
tion rates. Instead, we focus on the gap between near
and distant actors’ citation rates, which should have a
robust inverted-U relation to interdependence. (See the
Appendix A for a more detailed treatment of this point.)

2.5. Controls

The non-monotonic interactions between interdepen-
dence and proximity that we predict – if found in the
data – lend themselves to few alternative interpretations.
The models nevertheless include as controls several of
the most important variables used in prior patent studies
(e.g., Lanjouw and Schankerman, 2004).

13 We mean-deviate the variables before creating the interaction terms
to facilitate interpretation of the effects (Friedrich, 1982). For collab-
orative proximity, we use Unconnectedij as the excluded category.
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Table 1
Descriptive statistics and correlations

Mean S.D. 2 3 4 5 6 7 8 9 10 11 12

1. k 0.49 0.30 0.03 −0.02 −0.07 0.00 −0.11 0.10 0.07 −0.03 −0.05 −0.29 −0.35
2. Close collaboration 0.07 0.25 −0.21 0.14 0.30 0.17 −0.00 0.08 0.01 0.01 −0.01 0.00
3. Far collaboration 0.23 0.42 −0.06 0.01 0.01 0.12 0.15 −0.01 0.03 0.02 0.05
4. Organizational proximity 0.10 0.33 −0.09 −0.03 −0.06 −0.07 0.02 −0.04 −0.02 −0.03
5. Geographic proximity −6.50 1.96 0.20 0.00 0.05 0.05 0.01 0.00 0.01
6. Same class 0.26 0.44 0.12 0.08 0.04 0.02 −0.11 −0.01
7. Activity control 1.25 0.42 0.42 0.01 0.06 −0.02 0.08
8. Recent technology 3.97 0.62 −0.14 0.09 0.05 0.09
9. Backward patent citations 9.83 8.88 0.13 0.07 0.12
10. Backward non-patent citations 1.46 4.24 0.06 0.10
11. Number of classes 1.85 0.97 0.49
12. Number of subclasses 4.53 3.43

2.5.1. Activity control
The activity control accounts for the typical number

of citations received by a patent in the same technological
areas as the focal patent. In a first stage, we calculated the
average number of citations that each patent in a particu-
lar USPTO class received from patents granted between
January of 1985 and June of 1990 (Eq. (4)).14 We then
weighted these parameters according to the patent’s class
assignments (Eq. (5)), where pik indicates the proportion
of patent k’s sub-class memberships that fall in class i:

Average citations in patent class i ≡ µi

=

∑

j ∈ i

Citationsj (before 7/90)

Count of patents j in subclass i
(4)

Technology mean control patent k ≡ Mk = pikµi (5)

The models also include controls for several other fac-
tors. Same class is a dummy variable denoting whether
the two patents in each dyad belong to the same pri-
mary technological class. Recent technology is the mean
of the patent numbers of the focal patent’s prior art
(higher numbers indicating more recent technology).15

The models include counts of two types of backward
patent citations. First, they include a tally of the num-

14 We allow all patents issued between January 1985 and June 30,
1990 to enter the estimation of the activity control, meaning that the
patents used to calculate it vary in the time during which they can
receive citations. Alternatively, we could select a small set of patents
from 1985 and base the measures on the subsequent 5 years of citations;
however, this approach would ignore the patent activity just prior to
our sample.
15 This variable made use of the fact that the USPTO assigns patent

numbers sequentially. This assignment pattern generates a correlation
between a patent number and the grant date of the patent of 0.98.

ber of citations to patent prior art. Second, the models
include a control for the number of non-patent prior art
citations (e.g., references to published articles). Number
of classes is a count of the number of major classes and
number of subclasses is a count of the number of sub-
classes to which the focal patent is assigned. Descriptive
statistics appear in Table 1.16

3. Results

The results appear in Table 2. Model 1 estimates the
effects of the control variables alone, and Model 2 intro-
duces interdependence, k.

Model 3 provides the first test of our core hypothesis
by interacting interdependence with collaboration-based
indicators of social proximity. The results provide three
pieces of support for the hypothesis. First, the positive
sign on k × Close collaboration coupled with the nega-
tive sign on k2 × Close collaboration indicates that the
gap in citation probability between close and uncon-
nected inventors rises and then falls, peaking when the
source knowledge displays moderate interdependence.
(Recall that Unconnected is the excluded category, so
the coefficients related to Close collaboration capture
differences between close and unconnected inventors.)
Second, by subtracting the coefficients for Far collabo-
ration from the coefficients for Close collaboration, we
see that the largest gap between close and far inven-
tors also appears for moderate k. Third, the coefficient
estimates suggest that the greatest gap between far and

16 We also considered as a control variable the time between the
issuance dates of the focal and potentially citing patents in each dyad.
Exploratory analysis revealed small effect sizes (though typically sig-
nificant), and inclusion of the time control had no meaningful impact
on the coefficients of central interest.
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Table 2
Rare events logit models of the likelihood of a focal patent receiving a citation from a future patenta

Model 1 Model 2 Model 3 Model 4

k 0.863 (0.257)*** −1.599 (0.644)* −1.305 (0.378)**

k2 −0.203 (0.086)*** 1.116 (0.209)*** 1.051 (0.156)***

k × Close collaboration 3.242 (1.670)* 4.327 (1.659)**

k2 × Close collaboration −3.428 (0.708)*** (0.725) −4.881***

k × Far collaboration 1.569 (0.573)** 1.899 (0.627)**

k2 × Far collaboration −.802 (0.162)*** −1.056 (0.262)***

k × Geographic proximity 0.325 (0.078)***

k2 × Geographic proximity −0.241 (0.031)***

k × Organizational proximity 0.547 (0.679)
k2 × Organizational proximity −0.508 (0.232)*

Close collaboration 3.952 (0.628)** 3.979 (0.618)*** 3.660 (1.148)*** 2.925 (1.135)**

Far collaboration 0.224 (0.090)* 0.249 (0.089)** 0.244 (0.089)** −0.359 (0.246)
Geographical proximity 0.041 (0.012)*** 0.041 (0.012)*** 0.045 (0.011)*** 0.053 (0.012)***

Organizational proximity 0.457 (0.118)*** 0.431 (0.119)*** 0.423 (0.116)*** (0.355) 0.292
Same class 4.800 (0.084)*** 4.820 (0.085)*** 4.797 (0.083)*** 4.784 (0.083)***

Activity control 0.503 (0.097)*** 0.515 (0.098)*** 0.469 (0.095)*** 0.481 (0.096)***

Recent technology 0.268 (0.147) 0.278 (0.144) 0.226 (0.161) 0.245 (0.147)
Backward patent citations 0.022 (0.005)*** 0.021 (0.005)*** 0.020 (0.005)*** 0.021 (0.005)***

Backward non-patent citations 0.011 (0.009) 0.014 (0.009) 0.010 (0.008) 0.010 (0.009)
Number of classes 0.184 (0.047)*** 0.209 (0.048)*** 0.204 (0.047)*** 0.201 (0.046)***

Number of subclasses 0.184 (0.013)*** −0.016 (0.014) −0.017 (0.013) −0.023 (0.013)
Constant −12.28 (0.586)*** −12.89 (0.657)*** −12.21 (0.746)*** −11.91 (0.697)***

Log-likelihood −33772.4 −33751.1 −33738.2 −33720.2

a72,801 dyads (52% realized ties vs. 0.0004% in population); * p < 0.05; ** p < 0.01; ***p < 0.001.

unconnected inventors arises for moderate k (though
with much smaller magnitude; see below). In sum, our
primary measure for social proximity provides strong
support for our core hypothesis.17

Model 4 adds interactions of interdependence with
geographic and organizational proximity. Both proxies
for social proximity display the expected inverted-U rela-
tionship, though only the results for geographic proxim-
ity show strong statistical significance. Coefficients for
the collaboration-based measures retain their signs and
significance, as do most of the coefficients for the control
variables.

Based on Model 4, Fig. 2 traces out as a function of
interdependence, how many times more likely a citation

17 Since the high correlation between a term and its square can force
estimates to take opposing signs, we further tested the validity of
our non-monotonic effect in two ways: (1) in unreported estimates
(available from the first author), we re-estimated the models using a
log-quadratic specification and found qualitatively identical results.
Since this functional form can capture decreasing returns without a
significant coefficient on the quadratic term, it is less sensitive to these
problems. (2) We estimated a model with only the linear term and inter-
actions and then entered the quadratic terms. In all cases, the addition
of the quadratic terms significantly improved the model. (For example,
in Model 4, the addition of the quadratic k and its interactions has a
χ2 = 70.4, significant at p < 0.00001 with five degrees of freedom.)

Fig. 2. Citation multiplier for proximate vs. distant actors in the col-
laboration network as a function of interdependence. Note: The line
labeled “differential between close and unconnected collaborators”
shows, as a function of k, how many times more likely a citation is in a
dyad of patents whose inventors can reach one another through the col-
laboration network (path length < 4) relative to a dyad whose inventors
are unconnected in the network. When k = 0.45, for instance, a citation
is 48 times more likely. The other two lines provide the same informa-
tion for pairs of actors who are close vs. far (path length between 4 and
∞) in the collaboration network and for pairs of actors who are far vs.
unconnected. The figure is based on Model 4 of Table 2 for inventors
from different organizations, with all variables other than k and the
collaboration network indicators set to their mean values.
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is for collaboratively close pairs of inventors than for
unconnected pairs, for close pairs than for far pairs, and
for far pairs than for unconnected pairs. (We set all other
variables to their mean values for the purpose of creating
this chart.) The figure shows vividly that the maximal dif-
ference in citation probabilities between close pairs and
unconnected pairs arises when the focal patent displays
moderate interdependence. The same is true of the dif-
ference between close and far pairs. Fig. 2 also shows
that the citation difference between far and unconnected
inventors – while consistent with our hypothesis and
statistically significant – is much, much smaller. This
suggests that for access to knowledge, the value of a
social connection to the source drops off rapidly with
the number of intervening intermediaries, echoing the
findings of Singh (2005).

Fig. 3 shows, as a function of interdependence, how
many times greater the probability of citation is between
geographically proximate actors than between geograph-
ically distant actors. It does likewise for pairs of inven-
tors in the same organization versus pairs in differ-
ent organizations. In both cases, the benefits of social
proximity rise and then fall with k, peaking when the
source knowledge displays moderate interdependence.
This provides graphical affirmation of our hypothesis.

Fig. 3. Citation multiplier for proximate vs. distant actors (in geogra-
phy and organizational space) as a function of interdependence. Note:
The line labeled “differential due to geographic proximity” shows,
as a function of k, how many times more likely a citation is in a
dyad of patents when the inventors’ addresses on the patents reside 10
miles apart than when they reside 3000 miles apart. When k = 0.65, for
instance, the multiplier is 1.87 (i.e. 87% more likely). The line labeled
“differential due to organizational proximity” shows, as a function of k,
how many times more likely a citation is in a dyad of patents when the
same organization owns both patents relative to when they are owned
by different organizations. The figure is based on Model 4 of Table 2,
with all variables other than k and geographic and organizational prox-
imity set to their mean values.

In both Figs. 2 and 3, the peak differences fall within
the range of actual k in our data—in fact, within one
standard deviation above the mean.

In addition to being significant, the effects associ-
ated with our hypothesis can have substantial economic
import. For source knowledge that is simple (k ∼ 0), an
inventor close in the collaboration network is 30 times
more likely than a far inventor to cite a focal patent.
For knowledge of moderate interdependence at the gap-
maximizing level of k shown in Fig. 2, this number rises
to 39 times. As knowledge becomes more complex, the
number falls, becoming a mere seven times at k = 1.
For close and unconnected inventors, the figures are 23
times, 48 times, and 11 times, respectively.18 Similarly,
contrast an inventor 10 miles from the source of knowl-
edge and another 3000 miles away (both collaboratively-
unconnected to the source and in different organiza-
tions). When k ∼ 0, the first inventor is 9% more likely
that the second to cite the source. When k is at the gap-
maximizing level, the probability rises to 87%. It then
falls to 61% for k = 1. Such differences in citation like-
lihood are far from negligible.

Despite the apparent consistency of our results with
our expectations, proximity – collaborative, geographic,
or organizational – may reflect factors other than the
strength of social connections, factors that might also
influence the quality of one’s access to the template.
Actors proximate to a given patent might, for instance,
work on similar technical problems and therefore more
readily absorb the knowledge embodied in the patent
(Cohen and Levinthal, 1990). Any factor that improves
access to the template should have the effect that we
hypothesize. It is natural to interpret the proximity mea-
sures as indicators of social contact, as we do. It is
difficult, however, to rule out all other factors that the
proximity measures might reflect.

Similarly, our interdependence measure may capture
not only the complexity of an item of knowledge but
also its breadth of applicability. Our results might then
reflect a process in which low-k knowledge is broadly
applicable and diffuses widely; moderate-k knowledge
is of particular interest to select groups who tend to be
socially proximate to the inventor; and high-k knowl-
edge is of such narrow application that it diffuses very
narrowly. This would produce a pattern in which actors
socially proximate to a source of knowledge most fre-
quently receive and build on it if the knowledge has

18 These figures assume that the two inventors are 665 miles from
one another (the average distance in our sample) and work for different
organizations.
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moderate k. The driving force under this alternative inter-
pretation is not the relative ability of different actors to
search in the face of complexity but the relative inter-
est that different actors have in obtaining knowledge.
The alternative interpretation raises the question of pre-
cisely what makes an item of knowledge broadly or
narrowly applicable. Knowledge becomes broadly appli-
cable in part because it is modular and therefore can
mix and match with other pieces of knowledge across a
wide range of circumstances. Applicability, then, may
capture the interdependence of a piece of knowledge
(especially if one defines interdependence broadly and
not in a narrow technological sense). To the extent that
applicability reflects interdependence, we return to our
original core hypothesis: individuals proximate to the
source of some knowledge have the greatest advantage in
receiving and building on knowledge of moderate inter-
dependence/applicability.

4. Discussion

The analysis of patent citation patterns supports our
basic theoretical perspective on knowledge diffusion:
search in the space of possible combinations of ingre-
dients offers a useful lens for understanding the flow of
knowledge. Recipients socially proximate to the source
of the knowledge have preferential access to the orig-
inal success, which serves as a template during efforts
to receive and build on the knowledge. All recipients,
socially near and far, compete on equal footing when
receiving and extending simple knowledge; incremental
search suffices to reproduce simple knowledge, so guid-
ance from a prior success has little value. Highly complex
knowledge, on the other hand, equally resists diffusion
to both classes of would-be recipients. Hence, at both
extremes of complexity, the close recipient has no last-
ing advantage over the distant. In contrast, for knowledge
whose ingredients display a moderate degree of interde-
pendence, superior but imperfect access to the template
translates into greater success in receiving and build-
ing on preexisting knowledge. The close recipient can
complete its initially imperfect replica via local search,
but local search alone cannot guide the distant recipi-
ent to an accurate replica. Thus in our patent data, the
largest gap between the ability of a close recipient to
receive and build on prior knowledge relative to the abil-
ity of a distant recipient arises when the cited patent
involves moderate interdependence. This result appears
when social distance is measured by proximity in a col-
laboration network as well as when geographic and – to a
lesser extent – organizational proximity proxy for social
distance.

Our findings have an array of practical and theoret-
ical implications, especially for the issue of knowledge
inequality across social borders. Consider the graph of
a typical social network. It is quite common in such a
graph to observe patches of actors with dense connec-
tions amongst themselves and areas of sparse connec-
tions between patches (Owen-Smith and Powell, 2004).
The dense patches may reflect firms, for instance, or geo-
graphic regions. Actors within each patch sit socially
proximate to one another but relatively distant from
actors in other patches. A question of great practical
importance is: When does knowledge diffuse within
the patch where it originated but not across the thin
areas into other patches? When will knowledge dif-
fuse within a firm but not to competitors, or within
a region but not to other locales? When is inequal-
ity of knowledge sharpest across social borders? Our
results suggest that the nature of the knowledge, specif-
ically its degree of complexity, plays a critical role.
One might initially suspect that highly complex knowl-
edge, the most difficult to reproduce, would create the
greatest inequality across boundaries. Yet this intuition
ignores the fact that inequality in its sharpest form
requires some diffusion: to create the most inequity
across social boundaries, knowledge must creep up to
the edge of the thick patch of connections in which
it originated but not beyond. This phenomenon, we
have argued, most likely occurs for moderately complex
knowledge.

Accordingly, the results suggest a resolution to the
replication/imitation dilemma that has puzzled evolu-
tionary economists and strategy scholars. To achieve
a competitive advantage from knowledge, a firm must
typically leverage that knowledge across multiple appli-
cations, for example, across all its production facili-
ties (Winter, 1995). Yet any would-be replicator with
a valuable piece of knowledge faces a dilemma: the
profits produced by its original knowledge attract the
envious attention of imitators. Valuable knowledge pro-
vides a source of sustained advantage only to the extent
that it lends itself to replication yet defies imitation.
Unfortunately for the innovator, replication and imi-
tation typically go hand-in-hand (Nelson and Winter,
1982). Our results suggest, however, that replication-
without-imitation is especially likely when the target
knowledge entails moderate complexity. This micro-
level phenomenon may manifest itself in outcomes at
the industry level. One might expect that, ceteris paribus,
industries based on moderately complex knowledge will
display especially wide intra-industry dispersion in long-
run financial returns. We leave this promising hypothesis
for future research.
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The results also speak interestingly to the literature on
the geographic agglomeration of industries. Researchers
frequently cite knowledge spillovers as a prominent
reason that firms within an industry cluster together
(Marshall, 1890; Krugman, 1991) and congregate near
universities (Zucker et al., 1997). Our results certainly
support this point of view: dense social networks, which
tend to localize geographically, give firms and individu-
als close to the source of knowledge an important advan-
tage in reproducing and building upon the knowledge.
This begs the further question, why do some industries
cluster while others do not? Though research on eco-
nomic geography points out that knowledge spillovers
can contribute to agglomeration, it does not identify
what type of knowledge most likely engenders these
clusters. Our findings suggest that industries that rely
on moderately complex knowledge more commonly
form industrial districts (cf. Sorenson, 2004). Simple
knowledge can diffuse far and wide because incremental
search efforts can substitute for high-fidelity communi-
cation. As the complexity of knowledge increases, a gap
emerges between local diffusion and distant diffusion;
thus, the potential return to locating near to innovators
rises.

In addition to influencing geographic agglomeration
and industry structure, the nature of the underlying
knowledge used by a firm may have implications for
organizational design. Firms have both formal and infor-
mal structures that influence the degree to which actors
within the firm interact with each other. Managers can
influence who likely interacts with whom through the
assignment of individuals to facilities, the design of labo-
ratories and factories, and the structure of reporting rela-
tionships (Allen, 1977). To distribute knowledge effec-
tively, a firm might usefully expend resources to foment
close and dense social connections between sources and
intended recipients of complex knowledge, while letting
networks remain sparse elsewhere. Indeed, leaders might
fruitfully construe the task of knowledge management
not as the construction of central databases of informa-
tion (as sometimes presented today), but rather as an
effort to build social networks that match the nature and
intended flow of knowledge. Effective organizational
design, however, surely requires a deeper understand-
ing of how social structure affects knowledge diffusion
than considered here; networks have subtle features and
nuances that doubtlessly influence their ability to convey
knowledge, both simple and complex (Hansen, 1999).

To this point, our argument has assumed that the
degree of interdependence between combinations of
components remains fixed. In the long term, however,
the effective interdependence of knowledge may change.

Firms and inventors can invest in R&D to specify inter-
faces and embed knowledge within physical compo-
nents, thereby reducing the difficulty of combining a
particular combination of components with other ele-
ments in the future (Baldwin and Clark, 2000). In struc-
turing knowledge, managers must perform a delicate
balancing act. Isolating interdependencies within sub-
structures has important attractions, including the ability
to perform a greater number of independent experiments
(Baldwin and Clark, 2000) and the capacity to adjust
more readily to environmental shifts (Levinthal, 1997).
Engineering curricula support this preference with a
strong emphasis on reliability, black box design tech-
niques, and the re-use of previously combined compo-
nents (e.g., Mead and Conway, 1980). Such modulariza-
tion, however, also entails frequently overlooked costs.
Designing and implementing an architecture that isolates
interdependencies within substructures involves consid-
erable engineering costs (O’Sullivann, 2001). But those
direct costs potentially pale in comparison to the indi-
rect costs—the opportunities that the lack of complexity
opens for new entrants (Rivkin, 2000), the reduction in
variety from which developers can select (Christensen
et al., 2002), and the constraints on potential perfor-
mance (Fleming and Sorenson, 2001). Managers who
manipulate interdependencies should recognize that they
simultaneously alter the propensity of knowledge to flow
to actors near and far.

Despite the costs of modularizing, a secular trend
towards modularization may influence the evolution of
industries, creating a distinctive pattern. Direct costs
likely strike firms as more tangible than indirect costs
as they decide where to direct R&D effort. Thus, firms
may over-invest in less complex technology as they
seek to maximize efficiency. As this process reduces the
effective interdependence of the knowledge being dif-
fused, knowledge should flow more easily, generating
two industry-level patterns. First, an industry that begins
its life in a concentrated region should become less
concentrated geographically as the advantage of prefer-
ential access to the template declines (for related ideas,
see Audretsch and Feldman, 1996; Stuart and Sorenson,
2003).19 Second, the move towards less complex knowl-

19 This pattern seems consistent with the evolution of the software
industry, for instance. Early on, knowledge localized to an extreme:
understanding of a new piece of code resided in the head of a single
developer or a small group of developers in a university, govern-
ment, or large corporate computing facility. Inventors developed local
languages for specific hardware. Over time, programmers developed
techniques for reducing the interdependencies in code. Higher-level
languages such as Cobol and C allowed programmers to divorce
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edge likely reduces differentiation across firms’ prod-
ucts over time, leading to more intense price competi-
tion and efforts to control standard interfaces and key
modules—a pattern identified in the product lifecycle
literature.

To reiterate, our results demonstrate that knowledge
complexity importantly influences the dynamics of diffu-
sion. Specifically, a socially proximate actor’s advantage
over a distant actor in obtaining and building on knowl-
edge peaks when the components underlying the knowl-
edge display intermediate interdependence. Though our
empirical results come from patent data alone, the basic
logic of our hypotheses applies to knowledge in general,
not just the knowledge underlying inventions. Hence,
future research might usefully examine these dynamics
across a wide range of applications—including orga-
nizational learning, the diffusion of management prac-
tices, knowledge management, and the sustainability of
knowledge-based competitive advantage.
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Appendix A. Simulation of knowledge flow

A simple simulation of knowledge flow serves two
purposes. It clarifies further why the value of social
proximity reaches its peak in the transfer of knowledge
with intermediate interdependence. It also identifies the

code from specific hardware. Meanwhile, software production has dis-
persed geographically—beyond Silicon Valley, Route 128, and IBM’s
Armonk home, to Seattle, Austin, and even Bangalore.

range of empirical results consistent with our theoretical
model. Specifically, the theoretical model yields a unique
prediction about the impact of knowledge interdepen-
dence on the gap between citation rates of socially close
actors and socially distant actors, but can encompass a
range of findings about the effect of interdependence on
close-actor citation rates alone or on distant-actor rates
alone.

A.1. Model

A.1.1. Superstructure
The model employs Kauffman’s (1993) NK approach,

which a growing number of researchers have used to sim-
ulate technological or organizational search. The simula-
tion unfolds as follows. First, we choose two parameters:
N, the number of components or ingredients that com-
prise a piece of knowledge, and K, the degree to which
those components interact in determining the utility of
the knowledge. Using techniques described below, a
simulation then generates – in a stochastic manner – a
mapping from each possible way of configuring the N
components (i.e. each conceivable recipe) to a measure
of utility. One can visualize the mapping as a landscape
in a high-dimensional space. Each discrete component
constitutes a “horizontal” axis, and each possible manner
of using the component represents a point along that axis.
The vertical axis records the usefulness of the resulting
piece of knowledge.

Next, we assume that some firm has happened upon
the most useful possible piece of knowledge—the best
way to configure the components (i.e. the template
described in the main paper).20 Two new parties then
enter the landscape. One party, a close actor, has access
to the owner of the template, presumably through a social
tie, while the other, a distant actor, cannot access the orig-
inal template through his social network. Both strive to
rediscover the original success—the model’s equivalent
to the efforts to receive and build on knowledge discussed
in the main text. Thanks to its superior access to the tem-
plate, the close actor enjoys an advantage in this search
process. The close actor may begin its search closer to
the original success, reflecting the better information it
receives or its superior ability to interpret the transmis-
sion. Or, it may move toward the success with greater
speed and accuracy, reflecting its ability to seek advice
from the owner of the template. The simulation mod-

20 Our focus on the global maximum simplifies the simulation, but
the results remain qualitatively robust to a wide range of alternative
assumptions.
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els these mechanisms and records the relative success of
the close actor and the distant actor in rediscovering the
original piece of knowledge.

Following this first iteration, the simulation generates
a second mapping that, though it differs in its particulars,
has the same degree of interdependence as the first. A
second pair of close and distant actors tackle the second
problem, and the program records their relative success.
The simulation iterates through this process hundreds
of times. From the repetition emerges a profile of how
close and distant actors fare relative to one another for a
given degree of interdependence. We then adjust K, the
parameter that governs interdependence, and repeat the
process. By doing so, we build an understanding of how
interdependence affects the relative ability of close and
distant actors to rediscover the original success.

This description of the model’s superstructure leaves
two aspects of the simulation unspecified: how we gen-
erate landscapes and how actors search to rediscover the
original success.

A.1.2. Generation of landscapes
Each piece of knowledge consists of N components,

and each component j, j ∈ {1, 2, . . ., N}, can be config-
ured in two ways. Hence a particular piece of knowledge
s is an N-vector {s1, s2, . . ., sN} with sj ∈ {0, 1}. In the
knowledge germane to a chemical process, for instance,
component j might indicate the inclusion or exclusion of
a particular catalyst. Similarly, a string of four compo-
nents could represent which of 24 = 16 shades a heated
mixture must turn before being removed from a flame.
For any set of components, 2N possible pieces of knowl-
edge (recipes) exist. We assign a utility value to each
of these as follows. Assume that each component con-
tributes Cj to utility. Cj, depending not only on the
configuration, 0 or 1, of component j, but also on the
configuration of K other randomly assigned components:
Cj = Cj(sj, sj1, sj2, . . ., sjK). For each possible realization
of (sj, sj1, sj2, . . ., sjK), we draw a contribution Cj at
random from a uniform distribution between 0 and 1.
The overall utility associated with a piece of knowledge,
then, averages across the N contributions:

U(s) = [Cj(sj, sj1, sj2, . . . , sjK)]
N

.

K, the parameter that governs interdependence,
ranges from 0 to N − 1.21 K = 0 corresponds to a

21 Note that the empirically derived measure of coupling in the main
text, k, corresponds to the parameter K in the simulation model, but
the two differ at least in terms of scaling. For more on this relationship,
see footnote 9.

simple situation in which the contribution of each
component depends only on the configuration of
that component. K = N − 1 captures a complex set-
ting in which the contribution of each component
depends delicately on the configuration of every other
component.

Once the modeler sets N and K and the simulation
generates a particular landscape (i.e., a utility U(s) for
each of the 2N possible pieces of knowledge), the simu-
lation notes the piece of knowledge s* that produces the
greatest utility, which serves as a template in subsequent
search efforts.

A.1.3. Search
A modeled close actor and a modeled distant actor

enter the landscape, and each struggles to rediscover
the original success. Reflecting the reasoning on page
6 of the main text, neither begins precisely atop the peak
at s*. Rather, each receives an imperfect transmission
of the effective knowledge and begins some distance
d from s* (i.e. d of its N components differ from s*).
It must then correct its understanding through search.
We consider two types of search. A party involved in
incremental search adjusts one component, accepts the
adjustment if it produces an improvement in utility, and
ceases to search when no improvement opportunities
remain. A party engaged in long-jump search changes
multiple decisions at once, leaping toward s*. Its leap
typically misses the target; it replicates each component
of s* with probability θ. θ < 1 reflects imperfect access
to the template. After its leap, the long jumper improves
incrementally until it exhausts opportunities. Note that
either type of search could terminate on a local peak,
instead of at s*.

Though both parties have imperfect access, the close
actor has better access due to her social proximity to
the original success, which serves as a template. We
model the impact of social proximity in three ways.
The proximate actor may begin her search closer to s*

(dclose < ddistant), leap toward s* with greater accuracy
(θclose > θdistant), or – in leaping toward s* – may know
which components she has gotten “right” and “wrong.”
These benefits reflect both the more accurate transmis-
sion the close actor receives originally and her ability
to consult with the owner of the template as she tries to
correct the original transmission.

A.2. Interdependence and the landscape

Much of the intuition of the results flows from an
understanding of the impact of K on the topography
of the typical landscape. Four effects strike us as espe-
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cially germane.22 First, as K increases, the landscape
shifts from being smooth and single-peaked to being
rugged and multi-peaked. When K = 0, the N com-
ponents contribute independently to knowledge util-
ity. In that situation, alteration of a single compo-
nent changes the contribution of that component alone.
From any initial location on a landscape, then, a close
or distant actor can climb to the global peak via a
series of utility-improving, single-component tweaks
to its knowledge. In contrast, when K = N − 1, every
component influences the contribution of every other
component. Then a small step on the landscape –
a change in a single component – alters the contri-
butions of all N components. Consequently, adjacent
pieces of knowledge have altogether uncorrelated util-
ities, producing a very rugged surface with many local
peaks.

Second, as K rises, not only do local peaks prolif-
erate, but also the height of the average peak declines.
As the web of connections across components thickens,
it becomes possible to exhaust opportunities for incre-
mental improvement even at low levels of performance.
Hence, interdependence decreases the fruitfulness of
incremental search.

Third, though the height of the average peak falls
as K rises, the heights of the highest peaks rise with
K. When components interact with one another more
richly, the amount of variety attainable by mixing and
matching components increases, and the quality of the
best combination within that variety improves. Rugged
landscapes, though challenging to navigate, offer greater
fertility than smooth ones—in other words, they more
likely produce at least one exceptional peak. More
mechanically, recall that we drew a contribution Cj for
each possible realization of (sj, sj1, sj2, . . ., sjK). The
number of possible contributions for each component
(2K+1) rises sharply with K, increasing the available
variety.

Finally, as K increases, the high peaks on the typ-
ical landscape spread apart from one another, shifting
from a situation in which peaks cluster in mountain
ranges to one in which peaks spread uniformly across
the terrain.23 With greater interdependence, high peaks
carry less and less information about the location of other
high peaks. This effect undermines long-jump search,
decreasing the likelihood that a jump that aims for but
misses the global peak will nonetheless land on high
ground.

22 Kauffman (1993) explores these effects further.
23 For the intuition behind this effect, see Rivkin (2001), p. 283.

Fig. A1. Incremental search. Note: Parameter values for each simula-
tion are given in text. Each data point is an average over 100 landscapes.

Fig. A2. Long-jump search. Note: Parameter values for each simula-
tion are given in text. Each data point is an average over 100 landscapes.

A.3. Simulations and results

A.3.1. Percent of template performance attained
We explored the model under a wide variety of

assumptions regarding dclose, ddistant, θclose, and θdistant.
(N = 12 throughout. All results average over 100–200
landscapes.) Results remained similar throughout the
parameter space so we report only a handful of represen-
tative cases here (see Rivkin, 2001, for further robustness
checks). Figs. A1–A3 show, as a function of K, the
utility attained by the close actor and the distant actor
as a percentage of the utility of the template. Fig. A1
considers the case of incremental search with dclose = 4

Fig. A3. Long jumps with vs. without knowledge of errors. Note:
Parameter values for each simulation are given in text. Each data point
is an average over 100 landscapes.
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and ddistant = 10. Fig. A2 examines the case of long-
jump search with dclose = ddistant = 12, θclose = 0.6, and
θdistant = 0.4. Fig. A3 considers a situation in which both
parties start with a poor replica (dclose = ddistant = 12),
each tweaks uphill to a local peak, each then leaps toward
s* with equal accuracy (θclose = θdistant = 0.5), but in tak-
ing the leap, only the close actor knows which of its
components matches the components of s*.

In all cases, greater interdependence undermines both
close and distant actors, but the greatest gap between the
two arises at an intermediate level of K. To see why,
consider three situations:

• When K = 0, the close actor has no advantage at all.
The smooth landscape allows both firms to discover
the global peak eventually.

• As K rises, a gap emerges between the close actor’s
performance and that of the distant actor. The land-
scape is rugged enough that the distant actor becomes
stranded far from the global peak, and peaks clus-
ter enough that average peak height declines with
distance from the global peak. The landscape is suffi-
ciently smooth and clustered, however, that the close
actor – starting near s* or leaping toward s* accurately
– can scale s* or a nearby, nearly-as-high peak.

• As K approaches N, the gap closes. The landscape
becomes so rugged that even the close actor becomes
stranded on a peak other than s*. The close actor may
finish closer to s* than the distant actor does, but with
high peaks no longer clustered together, this prox-
imity has little benefit. When components depend on
each other delicately, superior but slightly imperfect
access to the template has little more value than highly
imperfect access.

A.3.2. Adjusting for frequency of attempts
The results so far report the knowledge-rediscovery

success of the close actor versus the distant actor condi-
tional on both parties attempting to rediscover the knowl-
edge embodied in the original success. In our empirical
tests, however, we examine the rates of patent citations
by close and distant actors. We interpret these rates as
an indication of the number of times the knowledge
underlying the focal patent has been received and built
upon. Accordingly, the rates reflect not only the degree
of success conditional on an attempt at rediscovery
being made, but also the frequency with which attempts
are made. If, for instance, the frequency of attempts
varies systematically with K, then the graphs of close-
and distant-actor patent counts versus K might reveal
shapes that differ in important ways from the pattern

Fig. A4. Incremental search with number of attempts proportional to
utility of template. Note: Parameter values for each simulation are given
in text. Each data point is an average over 100 landscapes.

shown in Figs. A1–A3. In this light, we consider three
scenarios.

First and most simply, suppose that the number of
attempts made by close and distant actors is indepen-
dent of K. Then we would expect the graphs of citation
rates to resemble Figs. A1–A3 without modification. In
other words, the frequency of both close- and distant-
actor citation would decline with K, and the maximal
difference would occur at intermediate K.

Second, assume that the number of attempts made by
socially close and distant actors increases in proportion
to the utility associated with the original success (i.e.,
more useful pieces of knowledge attract more attempts
at rediscovery). Recall that the utility of the best piece
of knowledge – the height of the global peak on the
landscape – rises with K, reflecting the greater variety
that comes from mixing and matching more interde-
pendent components. When we adjust Figs. A1–A3 to
incorporate more frequent rediscovery efforts on high-
K landscapes, the citation pattern shifts to that shown
in Figs. A4–A6. In contrast to Figs. A1–A3, the fre-
quency of close- and distant-actor citation now rises
at first, reflecting the fertility of higher-K landscapes,
but then declines. In line with Figs. A1–A3, the largest
gap between close- and distant-actor citation arises for
knowledge of intermediate interdependence.

Fig. A5. Long-jump search with number of attempts proportional to
utility of template. Note: Parameter values for each simulation are given
in text. Each data point is an average over 100 landscapes.
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Fig. A6. Long jumps with vs. without knowledge, number of attempts
proportional to utility of template. Note: Parameter values for each
simulation are given in text. Each data point is an average over 100
landscapes.

Fig. A7. Incremental search with number of attempts proportional to
expected utility of attempt. Note: Parameter values for each simulation
are given in text. Each data point is an average over 100 landscapes.

Finally, suppose that the number of attempts made
by close and distant actors reflects the utility that each
expects to attain in a rediscovery attempt. In deciding
whether to engage in an attempt, parties not only under-
stand that potential utility increases with K, but they also
adjust for the odds that they succeed. For instance, dis-
tant actors understand they have lower odds of success
and therefore make fewer attempts than do close actors.
When we adjust Figs. A1–A3 in this manner, we project
the citation pattern shown in Figs. A7–A9. Now the
distant-actor citation rate declines monotonically with
K while the close-actor citation rate has an inverted-U

Fig. A8. Long-jump search with number of attempts proportional to
expected utility of attempt. Note: Parameter values for each simulation
are given in text. Each data point is an average over 100 landscapes.

Fig. A9. Long jumps with vs. without knowledge, number of attempts
proportional to expected utility. Note: Parameter values for each sim-
ulation are given in text. Each data point is an average over 100
landscapes.

shape. Still, the gap between the two reaches its peak at
an intermediate value of K.

In sum, the robust prediction of our theory concerns
the gap between citation rates of close and distant actors,
not close-actor citation rates by themselves or distant-
actor citation rates alone. The gap between the two cita-
tion rates should have an inverted-U relationship with
respect to interdependence.
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